If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x)2=249
We move all terms to the left:
(3x)2-(249)=0
We add all the numbers together, and all the variables
3x^2-249=0
a = 3; b = 0; c = -249;
Δ = b2-4ac
Δ = 02-4·3·(-249)
Δ = 2988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2988}=\sqrt{36*83}=\sqrt{36}*\sqrt{83}=6\sqrt{83}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{83}}{2*3}=\frac{0-6\sqrt{83}}{6} =-\frac{6\sqrt{83}}{6} =-\sqrt{83} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{83}}{2*3}=\frac{0+6\sqrt{83}}{6} =\frac{6\sqrt{83}}{6} =\sqrt{83} $
| (3x)^2=249 | | (3x-11)/5=x+3 | | 9/10s=5/9 | | 5x-5+6+20=180 | | X/5+19=x/2+7 | | (3x-11)/5=1x+3 | | (20)(10)=0.05x+0.40(10-x) | | 0.5(-14x=22)-4x=132 | | 2/x+5/2=5/4 | | 3x-11/5=1x+3 | | Y=7+22x | | 5-25x-40x-10=-4x-8x | | (6x-6)+(5x+8)=13 | | 50×89=x | | 5(1−5x)+5(−8x−2)=−4x−8x | | i=20/4(16) | | 9(3+1x)=6(2X-1) | | (5x-7)^2-1=8 | | 4x-6+140=19x+14 | | -4(n+6)+5(7-3n)=-46 | | 32+x+x+107=125 | | -8x-4=180 | | h=8/7(28) | | -3y-1.8=3y-1.8 | | 32+8x+4=12+10x | | -6=-8(n-7)-6(-6+n) | | 4x+65=145 | | (3x-15)+(5x-23)=-30 | | 0=4.9t^2+120t | | 30+(2x)-20+(180(x+55))=180 | | X/5x30=18 | | x/122=6/11 |