If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+1)(2+2x)-6x=1+8x
We move all terms to the left:
(3x+1)(2+2x)-6x-(1+8x)=0
We add all the numbers together, and all the variables
(3x+1)(2x+2)-6x-(8x+1)=0
We add all the numbers together, and all the variables
-6x+(3x+1)(2x+2)-(8x+1)=0
We get rid of parentheses
-6x+(3x+1)(2x+2)-8x-1=0
We multiply parentheses ..
(+6x^2+6x+2x+2)-6x-8x-1=0
We add all the numbers together, and all the variables
(+6x^2+6x+2x+2)-14x-1=0
We get rid of parentheses
6x^2+6x+2x-14x+2-1=0
We add all the numbers together, and all the variables
6x^2-6x+1=0
a = 6; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·6·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{3}}{2*6}=\frac{6-2\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{3}}{2*6}=\frac{6+2\sqrt{3}}{12} $
| t=1+5/11 | | 3(x+1)=4(2x-1) | | -3(4t-4)+9t=8t-4 | | 3x+24=3x(x+24) | | 30-2c=24 | | -3(4x-7)+8=-12x+29 | | 6x(2)−17x+15=3x(2) | | X+2×7=y | | 4(x=0)=2x=6 | | 5(5x-6=-67.5 | | 3^2x+9=10×3x | | 2(2×-3)=-6(x+9) | | 1+1/4(3x-4)+3x/2=5-3x/8 | | 3p^2−p−8=0 | | 7(-10)+3x)=-49 | | 0.04(y-8)+0.14y=0.16y-0.01(20) | | 6143/6144-1=0.5^k | | 0.08(y-7)+0.04y=0.16y-0.01(70) | | y=2+0.028/0.24 | | 1/4s+20=-0.5s-4 | | 0.20(y-3)+0.08y=0.04y-0.09(20) | | 0.18(y-4)+0.08y=0.10y-0.03(60) | | 6w=4=4w+1 | | 14b=11 | | 14b =11 | | 6x+5/8=7x+7/8 | | 4÷3x+1=12÷3 | | -55.00+8.50x=123 | | 3-(5y+2(y-1)+4)=5-(2(y-3)-3(y-2)) | | 4÷3x+1=12÷4 | | y^2+3y+70=180 | | x=7x+60. |