(3x+1)(2x-3)-2(x+1)=7x+1

Simple and best practice solution for (3x+1)(2x-3)-2(x+1)=7x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(2x-3)-2(x+1)=7x+1 equation:



(3x+1)(2x-3)-2(x+1)=7x+1
We move all terms to the left:
(3x+1)(2x-3)-2(x+1)-(7x+1)=0
We multiply parentheses
(3x+1)(2x-3)-2x-(7x+1)-2=0
We get rid of parentheses
(3x+1)(2x-3)-2x-7x-1-2=0
We multiply parentheses ..
(+6x^2-9x+2x-3)-2x-7x-1-2=0
We add all the numbers together, and all the variables
(+6x^2-9x+2x-3)-9x-3=0
We get rid of parentheses
6x^2-9x+2x-9x-3-3=0
We add all the numbers together, and all the variables
6x^2-16x-6=0
a = 6; b = -16; c = -6;
Δ = b2-4ac
Δ = -162-4·6·(-6)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-20}{2*6}=\frac{-4}{12} =-1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+20}{2*6}=\frac{36}{12} =3 $

See similar equations:

| 4v+9=7v | | -2x=8x=-15 | | 5m+10-6m=m | | 15=2u-11 | | 2n-8=36 | | X2-11x+36=6 | | Y+-0.1+9y=39.9 | | -1+3x=4x-1 | | 16+g=18+4g+20 | | -3/4m-4=10 | | 0.06x−0.18=0.18 | | X2+5x+14=-6x-4 | | -5(6e-2(3e=-24 | | x-2=-4x+4x-7 | | -10j-2+1=-10-7j | | -23-9v=-14v+2 | | X2-6x+16=8 | | 2v-11=25 | | 23.25x+17=27.5x | | (x-12)^2=54 | | 4x+7=3x-10 | | -3(y-5)=224 | | -17v-4=13v-16 | | 4x2+16x+21=0 | | 7x9=(7x10)-(7X | | r/4=-13 | | -76=6h+6h(7+3h) | | 4.07=k0.07+3k | | x2+x=2 | | 1.3f+19.09=4.9f-7.59-6.5f | | 6x+2=3x-20 | | 5(f+4)=4(f-6) |

Equations solver categories