If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x + 1)(3x + -4) = 0 Reorder the terms: (1 + 3x)(3x + -4) = 0 Reorder the terms: (1 + 3x)(-4 + 3x) = 0 Multiply (1 + 3x) * (-4 + 3x) (1(-4 + 3x) + 3x * (-4 + 3x)) = 0 ((-4 * 1 + 3x * 1) + 3x * (-4 + 3x)) = 0 ((-4 + 3x) + 3x * (-4 + 3x)) = 0 (-4 + 3x + (-4 * 3x + 3x * 3x)) = 0 (-4 + 3x + (-12x + 9x2)) = 0 Combine like terms: 3x + -12x = -9x (-4 + -9x + 9x2) = 0 Solving -4 + -9x + 9x2 = 0 Solving for variable 'x'. Factor a trinomial. (-1 + -3x)(4 + -3x) = 0Subproblem 1
Set the factor '(-1 + -3x)' equal to zero and attempt to solve: Simplifying -1 + -3x = 0 Solving -1 + -3x = 0 Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + -3x = 0 + 1 Combine like terms: -1 + 1 = 0 0 + -3x = 0 + 1 -3x = 0 + 1 Combine like terms: 0 + 1 = 1 -3x = 1 Divide each side by '-3'. x = -0.3333333333 Simplifying x = -0.3333333333Subproblem 2
Set the factor '(4 + -3x)' equal to zero and attempt to solve: Simplifying 4 + -3x = 0 Solving 4 + -3x = 0 Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + -3x = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -3x = 0 + -4 -3x = 0 + -4 Combine like terms: 0 + -4 = -4 -3x = -4 Divide each side by '-3'. x = 1.333333333 Simplifying x = 1.333333333Solution
x = {-0.3333333333, 1.333333333}
| 8(15-6)= | | 3x-5(5x-2)=164 | | 3x+7=5x-5x | | 5(-8a+3)=-29+4a | | x+13=(-5) | | 3x^2+4(x^2-20)=6x^2-16 | | ln(x+2)-ln(11)=4 | | 12+[5(9+2x)]=7-5x | | X+15+5x+57=90 | | 2i(4i-7i)-3i(2+4i)=0 | | h=-16t^2+70t+400 | | 8x+12=6(5x+2) | | 14b-2-33=19b | | 2x(3-1)5+6-7= | | ln(x+2)+ln(11)=4 | | 400(X-7)=1200 | | 18t+12=27t+3 | | 3x+5+4x-5=7x | | (3x+25)=(5x-15) | | 3x+7-4x+2= | | -41=-7x-2(-2x+10) | | -x^2+5-6=0 | | (4-8i)(2i+1)=0 | | p^2-35p-92=-6p^2+6 | | 5+3(-3)=-2(-3) | | 45+(.24m)=65+(.23m) | | 4.7=2.6-0.5y | | 4x-9=22x | | 3x+12x+8=15x-14 | | x^3-y=8 | | 8m-4b=20 | | x+5+x-3=2x-1 |