If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+1)(x+1)=45
We move all terms to the left:
(3x+1)(x+1)-(45)=0
We multiply parentheses ..
(+3x^2+3x+x+1)-45=0
We get rid of parentheses
3x^2+3x+x+1-45=0
We add all the numbers together, and all the variables
3x^2+4x-44=0
a = 3; b = 4; c = -44;
Δ = b2-4ac
Δ = 42-4·3·(-44)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{34}}{2*3}=\frac{-4-4\sqrt{34}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{34}}{2*3}=\frac{-4+4\sqrt{34}}{6} $
| x^2-2x-95.04=0 | | 2(2x+1)-(3x)/2=-3(4+x)/2 | | 8x-2=21 | | -5(x+12)=30 | | w/3+12=13 | | 2=k-81/6 | | w/4+14=15 | | 8(x+2)=4(x-3) | | 7x+32+79=180 | | -4s+2(-4s+1)=125 | | 2-5x=-48 | | 7y-1=2(y+3)+5y | | 18-7m=4 | | 4x+49+100=180 | | H(t)=-5t+14t+24 | | 1/2=b/20 | | 8(p+1)-4=12 | | 6y+10=11y+7 | | 5=3b/2 | | -2(x-7)=-8x-10 | | -7x-43=-2(x-1) | | 7(x+5)=-7x-49 | | 7(x=5)=-7x-39 | | -7=3f/2-1 | | 12x-3x+1=82 | | 7(x+5)=-7-49 | | 12x-3x=82 | | 50(20-x)+40x=300 | | -7x+28=-5(x-2) | | 1/2=x/20 | | 9=5+2e/3 | | -5x+22=8(x+6) |