(3x+1)(x+2)=-1

Simple and best practice solution for (3x+1)(x+2)=-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(x+2)=-1 equation:


Simplifying
(3x + 1)(x + 2) = -1

Reorder the terms:
(1 + 3x)(x + 2) = -1

Reorder the terms:
(1 + 3x)(2 + x) = -1

Multiply (1 + 3x) * (2 + x)
(1(2 + x) + 3x * (2 + x)) = -1
((2 * 1 + x * 1) + 3x * (2 + x)) = -1
((2 + 1x) + 3x * (2 + x)) = -1
(2 + 1x + (2 * 3x + x * 3x)) = -1
(2 + 1x + (6x + 3x2)) = -1

Combine like terms: 1x + 6x = 7x
(2 + 7x + 3x2) = -1

Solving
2 + 7x + 3x2 = -1

Solving for variable 'x'.

Reorder the terms:
2 + 1 + 7x + 3x2 = -1 + 1

Combine like terms: 2 + 1 = 3
3 + 7x + 3x2 = -1 + 1

Combine like terms: -1 + 1 = 0
3 + 7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
1 + 2.333333333x + x2 = 0

Move the constant term to the right:

Add '-1' to each side of the equation.
1 + 2.333333333x + -1 + x2 = 0 + -1

Reorder the terms:
1 + -1 + 2.333333333x + x2 = 0 + -1

Combine like terms: 1 + -1 = 0
0 + 2.333333333x + x2 = 0 + -1
2.333333333x + x2 = 0 + -1

Combine like terms: 0 + -1 = -1
2.333333333x + x2 = -1

The x term is 2.333333333x.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333x + 1.361111112 + x2 = -1 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333x + x2 = -1 + 1.361111112

Combine like terms: -1 + 1.361111112 = 0.361111112
1.361111112 + 2.333333333x + x2 = 0.361111112

Factor a perfect square on the left side:
(x + 1.166666667)(x + 1.166666667) = 0.361111112

Calculate the square root of the right side: 0.600925213

Break this problem into two subproblems by setting 
(x + 1.166666667) equal to 0.600925213 and -0.600925213.

Subproblem 1

x + 1.166666667 = 0.600925213 Simplifying x + 1.166666667 = 0.600925213 Reorder the terms: 1.166666667 + x = 0.600925213 Solving 1.166666667 + x = 0.600925213 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 0.600925213 + -1.166666667 x = 0.600925213 + -1.166666667 Combine like terms: 0.600925213 + -1.166666667 = -0.565741454 x = -0.565741454 Simplifying x = -0.565741454

Subproblem 2

x + 1.166666667 = -0.600925213 Simplifying x + 1.166666667 = -0.600925213 Reorder the terms: 1.166666667 + x = -0.600925213 Solving 1.166666667 + x = -0.600925213 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -0.600925213 + -1.166666667 x = -0.600925213 + -1.166666667 Combine like terms: -0.600925213 + -1.166666667 = -1.76759188 x = -1.76759188 Simplifying x = -1.76759188

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.565741454, -1.76759188}

See similar equations:

| 3(5x+4)+5x=-8x | | 3x+6x=4x+9x | | 42x+37x^2-72x=46 | | x^2+10x+21=40 | | x+(x+34)=35 | | x^2+10x+21=12257001 | | x^2+10x+21=122500 | | x^2+10x+21=1225 | | x^2+10x+21=96 | | x^2+10x+21=1156 | | 5-12x+6x^2-x^3= | | x^2+10x+21=1089 | | x^2+10x+21=1024 | | x^2+10x+21=961 | | x^2+10x+21=900 | | x^2+10x+21=841 | | x^2+10x+21=784 | | x^2+10x+21=729 | | x^2+10x+21=676 | | x^2+10x+21=625 | | x^2+10x+21=576 | | x^2+10x+21=529 | | x^2+10x+21=484 | | x^2+10x+21=441 | | x^2+10x+21=400 | | 4x^2-72=0 | | x^2+10x+21=361 | | x^2+10x+21=324 | | x^2+10x+21=289 | | x^2+10x+21=256 | | 6(-2x)-3x=-30 | | x^2+10x+21=225 |

Equations solver categories