(3x+1)(x+3)=2x2+10

Simple and best practice solution for (3x+1)(x+3)=2x2+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(x+3)=2x2+10 equation:



(3x+1)(x+3)=2x^2+10
We move all terms to the left:
(3x+1)(x+3)-(2x^2+10)=0
We get rid of parentheses
-2x^2+(3x+1)(x+3)-10=0
We multiply parentheses ..
-2x^2+(+3x^2+9x+x+3)-10=0
We get rid of parentheses
-2x^2+3x^2+9x+x+3-10=0
We add all the numbers together, and all the variables
x^2+10x-7=0
a = 1; b = 10; c = -7;
Δ = b2-4ac
Δ = 102-4·1·(-7)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-8\sqrt{2}}{2*1}=\frac{-10-8\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+8\sqrt{2}}{2*1}=\frac{-10+8\sqrt{2}}{2} $

See similar equations:

| 30b=25 | | 0.5(2x+5)=9 | | 5.3+x/4=-1.1 | | 4u^2-2u+5=0 | | 2x+3=-5x+.75 | | x-194=284 | | 3x-3=-x+21 | | 61=4x+5x-2 | | 6z=43 | | -90=5(w-8) | | 7w^2-4w+7=0 | | 3.3-3.3x=6.6 | | 2s^2+2s-9=0 | | 4(y+4)=46-2y | | 9a+3(a+3)–a= | | -x+198=42 | | F(x)=9x^2-12x+19 | | (2+i)+(5-5i)=0 | | 4/7k=3/9 | | 31-(3y-8)=5(y+4) | | 6y-5=-53 | | 10+2(x+1)=4x-4(2x-2) | | 25x=÷35x | | w^2+2w+7=0 | | 69-w=261 | | v2+2v+1=0 | | 4=2y+5 | | 10-x=3.10 | | h=-5h/4-5 | | 3w^2-6w+9=0 | | 7x=8=4x+4 | | 2x+5÷1=11 |

Equations solver categories