(3x+1)(x-4)=2(x+1)(x-4)

Simple and best practice solution for (3x+1)(x-4)=2(x+1)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(x-4)=2(x+1)(x-4) equation:



(3x+1)(x-4)=2(x+1)(x-4)
We move all terms to the left:
(3x+1)(x-4)-(2(x+1)(x-4))=0
We multiply parentheses ..
(+3x^2-12x+x-4)-(2(x+1)(x-4))=0
We calculate terms in parentheses: -(2(x+1)(x-4)), so:
2(x+1)(x-4)
We multiply parentheses ..
2(+x^2-4x+x-4)
We multiply parentheses
2x^2-8x+2x-8
We add all the numbers together, and all the variables
2x^2-6x-8
Back to the equation:
-(2x^2-6x-8)
We get rid of parentheses
3x^2-2x^2-12x+x+6x-4+8=0
We add all the numbers together, and all the variables
x^2-5x+4=0
a = 1; b = -5; c = +4;
Δ = b2-4ac
Δ = -52-4·1·4
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3}{2*1}=\frac{2}{2} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3}{2*1}=\frac{8}{2} =4 $

See similar equations:

| 1/4x-6=-30 | | (-3x-2)=(x-3) | | (2x+12)=(3x+4) | | 5r^2-2r-3=0 | | (X+7)=(x+9) | | 4x*4x-24x+36=0 | | 1/2a-1/3a=4 | | -n^2+21n-400=0 | | t/5=t+3 | | B/a+5=3 | | (7/2)^(5x-5)*(2/7)^x=343/8 | | B=3a+15 | | (X-3)(x-5)-(x-4)(x-6)=3 | | 90/180=886/x | | x^2-1.6x-1.28=0 | | 8x+5(x+7)+9(2x+23)-3(x+6)=0 | | -1.3+u/6=-20.5 | | (x+5)/2=4/9 | | y“’-5y”+3y’+9y=0 | | 14(x-4)+3(x+5)=6(7-2x)+4 | | (x+5)^2+(x-2)^2=13^2 | | (x+5)2+(x-2)2=132 | | 3^y=27 | | 3(x-9)(x-7)-(x-7)(x-9)=0 | | 6-4x=8x+7 | | 3x-5-(2x-8)=7/5 | | (3X+4)-(14-2X)=x | | 2(5p-10)=3(2p+12) | | 2(5p-10)=3(2p+12 | | 2(5p-10)=3(2p012 | | 8x²-(x²-8x+10)=0 | | 5=-3x+39 |

Equations solver categories