(3x+1)=(x2+2x-7)

Simple and best practice solution for (3x+1)=(x2+2x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)=(x2+2x-7) equation:



(3x+1)=(x2+2x-7)
We move all terms to the left:
(3x+1)-((x2+2x-7))=0
We add all the numbers together, and all the variables
-((+x^2+2x-7))+(3x+1)=0
We get rid of parentheses
-((+x^2+2x-7))+3x+1=0
We calculate terms in parentheses: -((+x^2+2x-7)), so:
(+x^2+2x-7)
We get rid of parentheses
x^2+2x-7
Back to the equation:
-(x^2+2x-7)
We add all the numbers together, and all the variables
3x-(x^2+2x-7)+1=0
We get rid of parentheses
-x^2+3x-2x+7+1=0
We add all the numbers together, and all the variables
-1x^2+x+8=0
a = -1; b = 1; c = +8;
Δ = b2-4ac
Δ = 12-4·(-1)·8
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{33}}{2*-1}=\frac{-1-\sqrt{33}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{33}}{2*-1}=\frac{-1+\sqrt{33}}{-2} $

See similar equations:

| 112+8=2x40 | | 6p+3=8p-7 | | m7m8=113 | | 6z+4=7z | | (x-3)^4/3=1296 | | (-0.5x+2)(x+2)=4 | | 7x-3+32=27 | | y=100*25-2*25^2 | | 5x2-12×+7=0 | | 9x-3+8x+8=90 | | 5(2x+2)=100 | | Y=300x-2x^2 | | 1/3/4-5/6r=8/3 | | 2(7-x)=28 | | Y=100x-2x^2 | | (4y+6)+62=180 | | 1/3x1/3=1/3x1/3=1/3x1/3=1/3x1/3 | | 2x^2+16x=-18 | | 2^(n+5)=120 | | w-5=8-13 | | (2x+1)+148=180 | | 4x-10/2=9 | | 80+(3y-28)=90 | | 80+(3y-28)=180 | | (2x+1)+(360-x-2x-1148)=180 | | 2.5d=62.5 | | Y=-2x(x-50) | | 6/4=n/32 | | (6x-102)+66=180 | | -55+7x+4x=55 | | (n-9)*7=35 | | Y=-2x(x-150) |

Equations solver categories