(3x+17)+(1/2x+5)=180

Simple and best practice solution for (3x+17)+(1/2x+5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+17)+(1/2x+5)=180 equation:



(3x+17)+(1/2x+5)=180
We move all terms to the left:
(3x+17)+(1/2x+5)-(180)=0
Domain of the equation: 2x+5)!=0
x∈R
We get rid of parentheses
3x+1/2x+17+5-180=0
We multiply all the terms by the denominator
3x*2x+17*2x+5*2x-180*2x+1=0
Wy multiply elements
6x^2+34x+10x-360x+1=0
We add all the numbers together, and all the variables
6x^2-316x+1=0
a = 6; b = -316; c = +1;
Δ = b2-4ac
Δ = -3162-4·6·1
Δ = 99832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{99832}=\sqrt{4*24958}=\sqrt{4}*\sqrt{24958}=2\sqrt{24958}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-316)-2\sqrt{24958}}{2*6}=\frac{316-2\sqrt{24958}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-316)+2\sqrt{24958}}{2*6}=\frac{316+2\sqrt{24958}}{12} $

See similar equations:

| 2x^2-16x=4x^2-3x-7 | | 36-12x=12x-36 | | 3+5(x+4)=47 | | X+9/2=2x-7 | | 9c-10=6+c | | 2x+20=5x | | 2/3+3m/2=25/6 | | 8x-(3x+9)=1 | | 9j=-12 | | X-4√x=32 | | 3/5x=11/2 | | 8=4(r-17) | | (3x-2)*7=133 | | 5+−2m+6=11 | | 11−2x=5x−3 | | 6y-2y-1=7 | | 3(2x)=6 | | -4.9t^2+12t-7.35=0 | | 12-5h=h+8 | | 3s-11=s+9 | | -3(t+5)=(4t+2)=8 | | 3(8-6x)=30 | | 3(2)x=6 | | 6x=2x+50 | | 14p-7p=7 | | 30x+200=1100 | | 25+3x=5.5x | | x²+2x-143=0 | | h15.3+1h=1.3−1h | | 3q+122=9q+9 | | 3(2y-3)=-33 | | 2(3a-2)-(a+3)=8 |

Equations solver categories