(3x+17)+(1/2x-5)=180

Simple and best practice solution for (3x+17)+(1/2x-5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+17)+(1/2x-5)=180 equation:



(3x+17)+(1/2x-5)=180
We move all terms to the left:
(3x+17)+(1/2x-5)-(180)=0
Domain of the equation: 2x-5)!=0
x∈R
We get rid of parentheses
3x+1/2x+17-5-180=0
We multiply all the terms by the denominator
3x*2x+17*2x-5*2x-180*2x+1=0
Wy multiply elements
6x^2+34x-10x-360x+1=0
We add all the numbers together, and all the variables
6x^2-336x+1=0
a = 6; b = -336; c = +1;
Δ = b2-4ac
Δ = -3362-4·6·1
Δ = 112872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112872}=\sqrt{4*28218}=\sqrt{4}*\sqrt{28218}=2\sqrt{28218}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-336)-2\sqrt{28218}}{2*6}=\frac{336-2\sqrt{28218}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-336)+2\sqrt{28218}}{2*6}=\frac{336+2\sqrt{28218}}{12} $

See similar equations:

| 10-6x=-2(x-8)+8x | | 5c+5c+6c=0 | | (5x-3)^2=42 | | 13x+6=9x-2 | | 3m-5+7=10m | | 4/3r+1=-3/2+4r | | -198=-6(1+4n) | | 3x-4(x+2=5x+2-6x+10 | | a3+4=6 | | 5x=(-30/7) | | -2(5x-4)+5x=7 | | 11+10+2x=x+17 | | -26=-7+2(y-5) | | |-2x+6|=6 | | 3=​4​​g​​−5 | | 4/3r+1=-3/2+21/3r | | 15-2m=-1 | | x/16=23 | | 12e-14=2e+12 | | 4y–2(1–y)=–44 | | 32+4c-4=-4c-5 | | -4(6x+3)=34-x | | 5+4(2x-7)=4x-(x-3) | | 4x2-21x+27=0 | | (x+1)/x=3/5 | | 18/6=15+x/x | | 39+2n=7(1-2n) | | 4y+6=2y-14 | | 3x^2-29x=-2x^2-3x-24 | | 16/6=15+x/x | | Y=-2/9x+10 | | 20b=12b+7b |

Equations solver categories