(3x+17)+1/2x-5)=180

Simple and best practice solution for (3x+17)+1/2x-5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+17)+1/2x-5)=180 equation:



(3x+17)+1/2x-5)=180
We move all terms to the left:
(3x+17)+1/2x-5)-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
(3x+17)+1/2x=0
We get rid of parentheses
3x+1/2x+17=0
We multiply all the terms by the denominator
3x*2x+17*2x+1=0
Wy multiply elements
6x^2+34x+1=0
a = 6; b = 34; c = +1;
Δ = b2-4ac
Δ = 342-4·6·1
Δ = 1132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1132}=\sqrt{4*283}=\sqrt{4}*\sqrt{283}=2\sqrt{283}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{283}}{2*6}=\frac{-34-2\sqrt{283}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{283}}{2*6}=\frac{-34+2\sqrt{283}}{12} $

See similar equations:

| 1/2x2=2(-x+1) | | 10=5s+5s | | -40=8/5d | | x5-3=12 | | X+x+18x11=246 | | -8(w-1)=16 | | 9700+x=10700 | | M(2)=20d | | 7.5x=-90 | | 8v+-4(v+8)=8 | | 11y-43=43 | | v2=4 | | 12y=20y | | 6( | | -7v+3(v+5)=39 | | X+x-17=21 | | v=0.25*10 | | y+3.16=7.39 | | 3n+1=2÷8 | | −7x+6(5x+2)=−3+8x | | 5x-5x+8=10x-7-5x | | (a+20)=(a+20 | | x-8.1=7.95 | | v=0.25.10 | | -2w+6(w+7)=18 | | 2+1x+5=11 | | f−8=26 | | v=0.25+10 | | 28a+44=360 | | (–3)(–5+(–8))=n | | 96=z+19 | | {5k-2}{3k}=73k5k−2​ =7 |

Equations solver categories