(3x+19)(7x+5)+(2x+8)=180

Simple and best practice solution for (3x+19)(7x+5)+(2x+8)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+19)(7x+5)+(2x+8)=180 equation:



(3x+19)(7x+5)+(2x+8)=180
We move all terms to the left:
(3x+19)(7x+5)+(2x+8)-(180)=0
We get rid of parentheses
(3x+19)(7x+5)+2x+8-180=0
We multiply parentheses ..
(+21x^2+15x+133x+95)+2x+8-180=0
We add all the numbers together, and all the variables
(+21x^2+15x+133x+95)+2x-172=0
We get rid of parentheses
21x^2+15x+133x+2x+95-172=0
We add all the numbers together, and all the variables
21x^2+150x-77=0
a = 21; b = 150; c = -77;
Δ = b2-4ac
Δ = 1502-4·21·(-77)
Δ = 28968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28968}=\sqrt{4*7242}=\sqrt{4}*\sqrt{7242}=2\sqrt{7242}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-2\sqrt{7242}}{2*21}=\frac{-150-2\sqrt{7242}}{42} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+2\sqrt{7242}}{2*21}=\frac{-150+2\sqrt{7242}}{42} $

See similar equations:

| –10s+2s=–40 | | −1.5| | | 19=w+20 | | H=39.2t-4.9t² | | 1/10+1/r=1/5 | | 3w–13=14 | | 1/5=1/10+1/r | | -4.9x^2-2x+100=0 | | 35=–2s+19 | | ⅓(3X+9)=2x-10 | | 9c=–18 | | C=11x+18800 | | -3/4(8n+12)=-3n+n-(-1) | | 5c=–30 | | 7+r=–3 | | 17+c=29 | | v+14=21 | | 45=–9z | | (4x)+(9x+17)=(19x-63) | | 3+5y=-26 | | 3x^2+15=21 | | 2=2(d–3) | | –t2=6 | | x=100/150/30 | | 8=x/9+5 | | 4c-5+14c=27 | | -2(24)+15y=24 | | –11=w–14 | | 7p+3(-12p+10)=6(-5-4p) | | -3k-2=-11 | | 2(x-4)=2x-7 | | 49^x-6.7^x-7=0 |

Equations solver categories