(3x+2)(2x+23)=180

Simple and best practice solution for (3x+2)(2x+23)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+2)(2x+23)=180 equation:



(3x+2)(2x+23)=180
We move all terms to the left:
(3x+2)(2x+23)-(180)=0
We multiply parentheses ..
(+6x^2+69x+4x+46)-180=0
We get rid of parentheses
6x^2+69x+4x+46-180=0
We add all the numbers together, and all the variables
6x^2+73x-134=0
a = 6; b = 73; c = -134;
Δ = b2-4ac
Δ = 732-4·6·(-134)
Δ = 8545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-\sqrt{8545}}{2*6}=\frac{-73-\sqrt{8545}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+\sqrt{8545}}{2*6}=\frac{-73+\sqrt{8545}}{12} $

See similar equations:

| -2+1=3x+11 | | 3t−3t+4t−2t+t=9 | | 4t+28=36 | | 2t-2t+2t+2=12 | | -3x+2=-7-6x | | 10c-6c+6c=20 | | 4(f+9)-12=8 | | (30x^2)+30x-180=0 | | 6p+p-3p-2=2 | | 4x-339=x | | 4(f+9)−12=8 | | x-3=9x+25 | | 18x-x+5=10-2x+10 | | 5(y+5)-4=46 | | a13=-17 | | 10x+3/5=35 | | 23-7f=-54 | | 7d-5d=6 | | 15d-10d=20 | | 3/2p-2=10 | | 19a+a-20a+5a=20 | | -10=3p+11-2p | | 11=2-3x= | | -10x-10+5x+10=5 | | -3x=4/7 | | -(z+15)=1 | | x+(x=1)=17 | | 2x+5=-3x-20 | | b+17/9=6 | | 2(4t–5)=–3(2t+1) | | 3(h-5)=6 | | 1.5x-x+2=12 |

Equations solver categories