(3x+2)(x-2)=8

Simple and best practice solution for (3x+2)(x-2)=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+2)(x-2)=8 equation:


Simplifying
(3x + 2)(x + -2) = 8

Reorder the terms:
(2 + 3x)(x + -2) = 8

Reorder the terms:
(2 + 3x)(-2 + x) = 8

Multiply (2 + 3x) * (-2 + x)
(2(-2 + x) + 3x * (-2 + x)) = 8
((-2 * 2 + x * 2) + 3x * (-2 + x)) = 8
((-4 + 2x) + 3x * (-2 + x)) = 8
(-4 + 2x + (-2 * 3x + x * 3x)) = 8
(-4 + 2x + (-6x + 3x2)) = 8

Combine like terms: 2x + -6x = -4x
(-4 + -4x + 3x2) = 8

Solving
-4 + -4x + 3x2 = 8

Solving for variable 'x'.

Reorder the terms:
-4 + -8 + -4x + 3x2 = 8 + -8

Combine like terms: -4 + -8 = -12
-12 + -4x + 3x2 = 8 + -8

Combine like terms: 8 + -8 = 0
-12 + -4x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-4 + -1.333333333x + x2 = 0

Move the constant term to the right:

Add '4' to each side of the equation.
-4 + -1.333333333x + 4 + x2 = 0 + 4

Reorder the terms:
-4 + 4 + -1.333333333x + x2 = 0 + 4

Combine like terms: -4 + 4 = 0
0 + -1.333333333x + x2 = 0 + 4
-1.333333333x + x2 = 0 + 4

Combine like terms: 0 + 4 = 4
-1.333333333x + x2 = 4

The x term is -1.333333333x.  Take half its coefficient (-0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
-1.333333333x + 0.4444444442 + x2 = 4 + 0.4444444442

Reorder the terms:
0.4444444442 + -1.333333333x + x2 = 4 + 0.4444444442

Combine like terms: 4 + 0.4444444442 = 4.4444444442
0.4444444442 + -1.333333333x + x2 = 4.4444444442

Factor a perfect square on the left side:
(x + -0.6666666665)(x + -0.6666666665) = 4.4444444442

Calculate the square root of the right side: 2.108185107

Break this problem into two subproblems by setting 
(x + -0.6666666665) equal to 2.108185107 and -2.108185107.

Subproblem 1

x + -0.6666666665 = 2.108185107 Simplifying x + -0.6666666665 = 2.108185107 Reorder the terms: -0.6666666665 + x = 2.108185107 Solving -0.6666666665 + x = 2.108185107 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + x = 2.108185107 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + x = 2.108185107 + 0.6666666665 x = 2.108185107 + 0.6666666665 Combine like terms: 2.108185107 + 0.6666666665 = 2.7748517735 x = 2.7748517735 Simplifying x = 2.7748517735

Subproblem 2

x + -0.6666666665 = -2.108185107 Simplifying x + -0.6666666665 = -2.108185107 Reorder the terms: -0.6666666665 + x = -2.108185107 Solving -0.6666666665 + x = -2.108185107 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + x = -2.108185107 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + x = -2.108185107 + 0.6666666665 x = -2.108185107 + 0.6666666665 Combine like terms: -2.108185107 + 0.6666666665 = -1.4415184405 x = -1.4415184405 Simplifying x = -1.4415184405

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.7748517735, -1.4415184405}

See similar equations:

| -P+3p=2(3p+6)-6(p+6) | | 17-4(2x-3y)= | | lny=-5t+lnC | | 12x-4.9x=231 | | (h+5)(h-5)= | | 1.0005=0.005X+0.95 | | 0.01(x-7)=120 | | 56=8w-w | | c=37.25+0.25x | | 8-6x-4x=-42 | | x=3(7a+b)+8(a+3b) | | y+4y=10 | | 2(5v+6)=72 | | 37.25+0.25x=c | | -2(x-5)+4=4(2x+4) | | 4x-7=-3k | | 4(3u-u)+u=22+2u | | 23=4x+3x | | 47x+22=47x+22 | | 5=2w-11 | | -2c-c+12=46 | | 5p+2.5= | | (6+z)(3z+4)=0 | | 6=13x-7x | | 2(x+4)-4=4(x+2)+10 | | 20x+17=117 | | 9x+5=52 | | 6y-1(6+4y)=26 | | -3x(x-8)-5=9(x+2)+1 | | .004(9-K)+.04(K-9)=1 | | 0.8(n-10)=-0,88888889 | | 2(3y-5)=62 |

Equations solver categories