(3x+20)(+2x+80)=180

Simple and best practice solution for (3x+20)(+2x+80)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+20)(+2x+80)=180 equation:



(3x+20)(+2x+80)=180
We move all terms to the left:
(3x+20)(+2x+80)-(180)=0
We add all the numbers together, and all the variables
(3x+20)(2x+80)-180=0
We multiply parentheses ..
(+6x^2+240x+40x+1600)-180=0
We get rid of parentheses
6x^2+240x+40x+1600-180=0
We add all the numbers together, and all the variables
6x^2+280x+1420=0
a = 6; b = 280; c = +1420;
Δ = b2-4ac
Δ = 2802-4·6·1420
Δ = 44320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44320}=\sqrt{16*2770}=\sqrt{16}*\sqrt{2770}=4\sqrt{2770}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(280)-4\sqrt{2770}}{2*6}=\frac{-280-4\sqrt{2770}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(280)+4\sqrt{2770}}{2*6}=\frac{-280+4\sqrt{2770}}{12} $

See similar equations:

| 3x+20=180+2x+80 | | 3x+20=1802x+80 | | 3x+40=x+30 | | -14x+-2=-5x+-18 | | 50=10z-5 | | -20x+20=100 | | x+(x+3)+x=30 | | 2(4x+2)=-3(4x-5) | | (25x-15=) | | 7x-16=36 | | 4(4x+2)=-5(2x-5) | | 2(x-2)-13=-6.2 | | 4(w+4)=36 | | (x+9)^2=169 | | |x+23|=6 | | 1.3x+0.8-x=24 | | 1.3x×(1-0.2)-x=24 | | 11x-x^2=120 | | 11x-x^2=20 | | x-183=28 | | 10x+14=-13x+-15 | | x^2-5x-7/2x=0 | | 1a-a/5=288 | | 1x-20=180 | | 131-u=120 | | -9x+-7=3x+-16 | | 7x+-20=-2 | | B+b/2=10.5 | | B+b÷2=10.5 | | v^2-10v+63=-10 | | 7(x-8)-6=4(x+2)+7 | | 7y-3=-20 |

Equations solver categories