If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x + 2y)(2x + -5y) = 0 Multiply (3x + 2y) * (2x + -5y) (3x * (2x + -5y) + 2y * (2x + -5y)) = 0 ((2x * 3x + -5y * 3x) + 2y * (2x + -5y)) = 0 Reorder the terms: ((-15xy + 6x2) + 2y * (2x + -5y)) = 0 ((-15xy + 6x2) + 2y * (2x + -5y)) = 0 (-15xy + 6x2 + (2x * 2y + -5y * 2y)) = 0 (-15xy + 6x2 + (4xy + -10y2)) = 0 Reorder the terms: (-15xy + 4xy + 6x2 + -10y2) = 0 Combine like terms: -15xy + 4xy = -11xy (-11xy + 6x2 + -10y2) = 0 Solving -11xy + 6x2 + -10y2 = 0 Solving for variable 'x'. Factor a trinomial. (2x + -5y)(3x + 2y) = 0Subproblem 1
Set the factor '(2x + -5y)' equal to zero and attempt to solve: Simplifying 2x + -5y = 0 Solving 2x + -5y = 0 Move all terms containing x to the left, all other terms to the right. Add '5y' to each side of the equation. 2x + -5y + 5y = 0 + 5y Combine like terms: -5y + 5y = 0 2x + 0 = 0 + 5y 2x = 0 + 5y Remove the zero: 2x = 5y Divide each side by '2'. x = 2.5y Simplifying x = 2.5ySubproblem 2
Set the factor '(3x + 2y)' equal to zero and attempt to solve: Simplifying 3x + 2y = 0 Solving 3x + 2y = 0 Move all terms containing x to the left, all other terms to the right. Add '-2y' to each side of the equation. 3x + 2y + -2y = 0 + -2y Combine like terms: 2y + -2y = 0 3x + 0 = 0 + -2y 3x = 0 + -2y Remove the zero: 3x = -2y Divide each side by '3'. x = -0.6666666667y Simplifying x = -0.6666666667ySolution
x = {2.5y, -0.6666666667y}
| 19r-12r+5r-13r-10=-16 | | 6u+7u-16=-81 | | y^2-2y=-3y+20 | | y=2(x-1)+8 | | 4r^2-144= | | 17d-16d+d+d=-18 | | 20+yi=13-x+3 | | -23m+95m-98m+8=60 | | x+50=100 | | y=8(x-5)+60 | | -9x-21=-3x-7 | | -6(v-7)=5v-24 | | 15x^2+39x+18=0 | | 2xy+y= | | -5(m-74)+73=-22 | | 3(x-7)=9(x+2) | | ln*2x=5 | | 3x(2x^3-2x^2-x)=0 | | 172=258-w | | 2x^3-2x^2-x=0 | | 20+yi=13-x+3I | | 196=-w+294 | | 6x^4-6x^3-3x^2+3x=0 | | 5h+h=6 | | Log[5](4x-79)=0 | | 120-v=239 | | 6x^3*(x-1)-3x*(x-1)=0 | | 8k-15=-3k+9 | | (3x-10)+(2x+5)=180 | | y=6x+60 | | 8ln(5x)=45 | | 8ln(5x)=40 |