(3x+3.1)(3.1)x=7

Simple and best practice solution for (3x+3.1)(3.1)x=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+3.1)(3.1)x=7 equation:


Simplifying
(3x + 3.1)(3.1) * x = 7

Reorder the terms:
(3.1 + 3x)(3.1) * x = 7

Reorder the terms for easier multiplication:
3.1x(3.1 + 3x) = 7
(3.1 * 3.1x + 3x * 3.1x) = 7
(9.61x + 9.3x2) = 7

Solving
9.61x + 9.3x2 = 7

Solving for variable 'x'.

Reorder the terms:
-7 + 9.61x + 9.3x2 = 7 + -7

Combine like terms: 7 + -7 = 0
-7 + 9.61x + 9.3x2 = 0

Begin completing the square.  Divide all terms by
9.3 the coefficient of the squared term: 

Divide each side by '9.3'.
-0.752688172 + 1.033333333x + x2 = 0

Move the constant term to the right:

Add '0.752688172' to each side of the equation.
-0.752688172 + 1.033333333x + 0.752688172 + x2 = 0 + 0.752688172

Reorder the terms:
-0.752688172 + 0.752688172 + 1.033333333x + x2 = 0 + 0.752688172

Combine like terms: -0.752688172 + 0.752688172 = 0.000000000
0.000000000 + 1.033333333x + x2 = 0 + 0.752688172
1.033333333x + x2 = 0 + 0.752688172

Combine like terms: 0 + 0.752688172 = 0.752688172
1.033333333x + x2 = 0.752688172

The x term is 1.033333333x.  Take half its coefficient (0.5166666665).
Square it (0.2669444443) and add it to both sides.

Add '0.2669444443' to each side of the equation.
1.033333333x + 0.2669444443 + x2 = 0.752688172 + 0.2669444443

Reorder the terms:
0.2669444443 + 1.033333333x + x2 = 0.752688172 + 0.2669444443

Combine like terms: 0.752688172 + 0.2669444443 = 1.0196326163
0.2669444443 + 1.033333333x + x2 = 1.0196326163

Factor a perfect square on the left side:
(x + 0.5166666665)(x + 0.5166666665) = 1.0196326163

Calculate the square root of the right side: 1.009768595

Break this problem into two subproblems by setting 
(x + 0.5166666665) equal to 1.009768595 and -1.009768595.

Subproblem 1

x + 0.5166666665 = 1.009768595 Simplifying x + 0.5166666665 = 1.009768595 Reorder the terms: 0.5166666665 + x = 1.009768595 Solving 0.5166666665 + x = 1.009768595 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5166666665' to each side of the equation. 0.5166666665 + -0.5166666665 + x = 1.009768595 + -0.5166666665 Combine like terms: 0.5166666665 + -0.5166666665 = 0.0000000000 0.0000000000 + x = 1.009768595 + -0.5166666665 x = 1.009768595 + -0.5166666665 Combine like terms: 1.009768595 + -0.5166666665 = 0.4931019285 x = 0.4931019285 Simplifying x = 0.4931019285

Subproblem 2

x + 0.5166666665 = -1.009768595 Simplifying x + 0.5166666665 = -1.009768595 Reorder the terms: 0.5166666665 + x = -1.009768595 Solving 0.5166666665 + x = -1.009768595 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5166666665' to each side of the equation. 0.5166666665 + -0.5166666665 + x = -1.009768595 + -0.5166666665 Combine like terms: 0.5166666665 + -0.5166666665 = 0.0000000000 0.0000000000 + x = -1.009768595 + -0.5166666665 x = -1.009768595 + -0.5166666665 Combine like terms: -1.009768595 + -0.5166666665 = -1.5264352615 x = -1.5264352615 Simplifying x = -1.5264352615

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.4931019285, -1.5264352615}

See similar equations:

| 6x*(-3)=198 | | 7(5m+9)=34 | | 8-x=4y | | 1/9^1-3x^2 | | 1-3(2)=0 | | 1-2(2)= | | 4x+689%133=14795 | | y=abs(ln(abs(x))) | | 979+485+379= | | -2(t-2)+6t=9t-6 | | w^2-14+13=0 | | -2(t-1)+4t=5t-9 | | f(x)=3x^2+7x+8 | | (7+v)(2v+9)=0 | | -112=8b(2-2a) | | 7(x-4)=9 | | 15mn^3-25m^2-15mn^2= | | y=-16x^2+96x-128 | | 61=x*y+z | | f(x)=x^3+3x^2*5x+4 | | 7(2p+3)-8=6p+39 | | 3w-3=3x+6 | | y-200=8x | | 0.1x^2+2x=50 | | 3x^2-9=-6 | | y=3cos(4x^2) | | x^45/x^2-1 | | 8x+7=10-5 | | 7x-4=4x | | 2x^2+2+5x=0 | | -nm^4/-3m^2n^-1 | | ln(14/a*x^2*-2x)*-2 |

Equations solver categories