If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+36)(2x+42)=1440
We move all terms to the left:
(3x+36)(2x+42)-(1440)=0
We multiply parentheses ..
(+6x^2+126x+72x+1512)-1440=0
We get rid of parentheses
6x^2+126x+72x+1512-1440=0
We add all the numbers together, and all the variables
6x^2+198x+72=0
a = 6; b = 198; c = +72;
Δ = b2-4ac
Δ = 1982-4·6·72
Δ = 37476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37476}=\sqrt{36*1041}=\sqrt{36}*\sqrt{1041}=6\sqrt{1041}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(198)-6\sqrt{1041}}{2*6}=\frac{-198-6\sqrt{1041}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(198)+6\sqrt{1041}}{2*6}=\frac{-198+6\sqrt{1041}}{12} $
| -5x+3+3x+5=0 | | 1/5y=2 | | (x+5)*3=(x-5)*3x | | 10x+1=50 | | 2t^2+5t+25=0 | | -1/5+b=2/3 | | 7y-4=6 | | 3z-4=26 | | 2x-6=-3x-12 | | 4x+17=778 | | 3x-5=12-3x | | 0.08x+0.09(x+2,000)=860 | | 6x-103=65 | | 35+x+2x=215 | | 6x-130=65 | | 3x-103=65 | | 8-4a=108 | | 3(x+2)-2x=-2(x-3)=3 | | 2018x^2+x-2017=0 | | 5(x1)+3(2x)=0 | | 2(2x-4=24 | | 2(2x-8)=10 | | 0.5x0.2(18-x)=5.4 | | 2(4x-10=4(2x+3) | | (3x+2)(x+1)=(x+4)(x-5) | | 10x+3=5x+37 | | 5x+3/2=2x-1/3 | | 2(b+11)=6 | | −1.6(2c+12)=12 | | x^2+3x=x^2+15 | | x+97=45 | | 3=-16x^2+80x+3 |