If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x + 3y + -4) * dy + (x + y) * dx = 0 Reorder the terms: (-4 + 3x + 3y) * dy + (x + y) * dx = 0 Reorder the terms for easier multiplication: dy(-4 + 3x + 3y) + (x + y) * dx = 0 (-4 * dy + 3x * dy + 3y * dy) + (x + y) * dx = 0 Reorder the terms: (3dxy + -4dy + 3dy2) + (x + y) * dx = 0 (3dxy + -4dy + 3dy2) + (x + y) * dx = 0 Reorder the terms for easier multiplication: 3dxy + -4dy + 3dy2 + dx(x + y) = 0 3dxy + -4dy + 3dy2 + (x * dx + y * dx) = 0 Reorder the terms: 3dxy + -4dy + 3dy2 + (dxy + dx2) = 0 3dxy + -4dy + 3dy2 + (dxy + dx2) = 0 Reorder the terms: 3dxy + dxy + dx2 + -4dy + 3dy2 = 0 Combine like terms: 3dxy + dxy = 4dxy 4dxy + dx2 + -4dy + 3dy2 = 0 Solving 4dxy + dx2 + -4dy + 3dy2 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), 'd'. d(4xy + x2 + -4y + 3y2) = 0Subproblem 1
Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0Subproblem 2
Set the factor '(4xy + x2 + -4y + 3y2)' equal to zero and attempt to solve: Simplifying 4xy + x2 + -4y + 3y2 = 0 Solving 4xy + x2 + -4y + 3y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-4xy' to each side of the equation. 4xy + x2 + -4y + -4xy + 3y2 = 0 + -4xy Reorder the terms: 4xy + -4xy + x2 + -4y + 3y2 = 0 + -4xy Combine like terms: 4xy + -4xy = 0 0 + x2 + -4y + 3y2 = 0 + -4xy x2 + -4y + 3y2 = 0 + -4xy Remove the zero: x2 + -4y + 3y2 = -4xy Add '-1x2' to each side of the equation. x2 + -4y + -1x2 + 3y2 = -4xy + -1x2 Reorder the terms: x2 + -1x2 + -4y + 3y2 = -4xy + -1x2 Combine like terms: x2 + -1x2 = 0 0 + -4y + 3y2 = -4xy + -1x2 -4y + 3y2 = -4xy + -1x2 Add '4y' to each side of the equation. -4y + 4y + 3y2 = -4xy + -1x2 + 4y Combine like terms: -4y + 4y = 0 0 + 3y2 = -4xy + -1x2 + 4y 3y2 = -4xy + -1x2 + 4y Add '-3y2' to each side of the equation. 3y2 + -3y2 = -4xy + -1x2 + 4y + -3y2 Combine like terms: 3y2 + -3y2 = 0 0 = -4xy + -1x2 + 4y + -3y2 Simplifying 0 = -4xy + -1x2 + 4y + -3y2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
d = {0}
| 3in(x+3)-2=x^2-4x+4 | | -5(X+4)=2 | | 5y-1=2y+2 | | -3(-X-4)=-5 | | -4(2X+4)=-1 | | 3t-6=t-6 | | -(-2X-4)=2 | | 3log(x)+2=-2x+3 | | -2a=-6.4 | | 19-(2x-7)2=-x | | 8x-.5(4+.3x)= | | 2(-2X-4)=-9 | | 20a^2-5= | | lg(1+6x)+lg(-x-1)=0 | | 8b-2b=6b | | 16-3n=-2(4n+7) | | 1x+6=2x+5 | | 2(x+8)=6x+14 | | 3(2+6X)-8(X-5)=(3X+2) | | 2(8x+7)=142 | | 27+4n=-5-6(n+8) | | 3(6x+5)=195 | | 84=-3(5x+2) | | f(1)=3x | | -132=7(1+4x)+1 | | 3x+7=-2x-7 | | -1+5+x-2x=x-6 | | 9 k = 36 | | 7x-6=4x-12 | | 6 n = 48 | | 7(1x+7)=147 | | 1+v-8v=-13 |