(3x+4)(3x-4)=(6x-7)(3x+2)

Simple and best practice solution for (3x+4)(3x-4)=(6x-7)(3x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+4)(3x-4)=(6x-7)(3x+2) equation:



(3x+4)(3x-4)=(6x-7)(3x+2)
We move all terms to the left:
(3x+4)(3x-4)-((6x-7)(3x+2))=0
We use the square of the difference formula
9x^2-((6x-7)(3x+2))-16=0
We multiply parentheses ..
9x^2-((+18x^2+12x-21x-14))-16=0
We calculate terms in parentheses: -((+18x^2+12x-21x-14)), so:
(+18x^2+12x-21x-14)
We get rid of parentheses
18x^2+12x-21x-14
We add all the numbers together, and all the variables
18x^2-9x-14
Back to the equation:
-(18x^2-9x-14)
We get rid of parentheses
9x^2-18x^2+9x+14-16=0
We add all the numbers together, and all the variables
-9x^2+9x-2=0
a = -9; b = 9; c = -2;
Δ = b2-4ac
Δ = 92-4·(-9)·(-2)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3}{2*-9}=\frac{-12}{-18} =2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3}{2*-9}=\frac{-6}{-18} =1/3 $

See similar equations:

| 3x2-12=27 | | 2(2x-1)(x+2)-(2x-1)^2=x+2 | | 3(6-8x)+29x-6(3x+5)якщоx=-1 | | 6x–2=4+5x | | 6x+9x^=3 | | 4r–=6r+5 | | 3x+3x+2=90 | | 32^3x=8^x-4 | | 6e-6=22.2 | | n≥12;n=0 | | (4-x)^3=-1/16 | | (-100-30x)/27000=0 | | 4÷3x-6=7x+2 | | 3/10x+9=4/5x-1 | | 71x-568=2911 | | 61x-122=366 | | x+x+7-x=13 | | —3x=81 | | 175x0,20=F2x0,02 | | 175x0,2=F2x0,02 | | ]–3x+6x=–3–6 | | 4x2=3x(-9x+6) | | 11x+5=4x3 | | h+6=-21 | | f-2=-7 | | z+4=17 | | 5x3=2x+7 | | x+1,2x+2,2x=75000 | | 8-(2x-9)=5+(x-4) | | 7(x-5)+3=4-x | | 2(y+1)=3(y+2) | | 0,4x-0,3=0,7 |

Equations solver categories