(3x+4)(6x+5)-15(5x+2)=5(3x+4)(2x+3)-15(3x+4)

Simple and best practice solution for (3x+4)(6x+5)-15(5x+2)=5(3x+4)(2x+3)-15(3x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+4)(6x+5)-15(5x+2)=5(3x+4)(2x+3)-15(3x+4) equation:


Simplifying
(3x + 4)(6x + 5) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)

Reorder the terms:
(4 + 3x)(6x + 5) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)

Reorder the terms:
(4 + 3x)(5 + 6x) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)

Multiply (4 + 3x) * (5 + 6x)
(4(5 + 6x) + 3x * (5 + 6x)) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)
((5 * 4 + 6x * 4) + 3x * (5 + 6x)) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)
((20 + 24x) + 3x * (5 + 6x)) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)
(20 + 24x + (5 * 3x + 6x * 3x)) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)
(20 + 24x + (15x + 18x2)) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)

Combine like terms: 24x + 15x = 39x
(20 + 39x + 18x2) + -15(5x + 2) = 5(3x + 4)(2x + 3) + -15(3x + 4)

Reorder the terms:
20 + 39x + 18x2 + -15(2 + 5x) = 5(3x + 4)(2x + 3) + -15(3x + 4)
20 + 39x + 18x2 + (2 * -15 + 5x * -15) = 5(3x + 4)(2x + 3) + -15(3x + 4)
20 + 39x + 18x2 + (-30 + -75x) = 5(3x + 4)(2x + 3) + -15(3x + 4)

Reorder the terms:
20 + -30 + 39x + -75x + 18x2 = 5(3x + 4)(2x + 3) + -15(3x + 4)

Combine like terms: 20 + -30 = -10
-10 + 39x + -75x + 18x2 = 5(3x + 4)(2x + 3) + -15(3x + 4)

Combine like terms: 39x + -75x = -36x
-10 + -36x + 18x2 = 5(3x + 4)(2x + 3) + -15(3x + 4)

Reorder the terms:
-10 + -36x + 18x2 = 5(4 + 3x)(2x + 3) + -15(3x + 4)

Reorder the terms:
-10 + -36x + 18x2 = 5(4 + 3x)(3 + 2x) + -15(3x + 4)

Multiply (4 + 3x) * (3 + 2x)
-10 + -36x + 18x2 = 5(4(3 + 2x) + 3x * (3 + 2x)) + -15(3x + 4)
-10 + -36x + 18x2 = 5((3 * 4 + 2x * 4) + 3x * (3 + 2x)) + -15(3x + 4)
-10 + -36x + 18x2 = 5((12 + 8x) + 3x * (3 + 2x)) + -15(3x + 4)
-10 + -36x + 18x2 = 5(12 + 8x + (3 * 3x + 2x * 3x)) + -15(3x + 4)
-10 + -36x + 18x2 = 5(12 + 8x + (9x + 6x2)) + -15(3x + 4)

Combine like terms: 8x + 9x = 17x
-10 + -36x + 18x2 = 5(12 + 17x + 6x2) + -15(3x + 4)
-10 + -36x + 18x2 = (12 * 5 + 17x * 5 + 6x2 * 5) + -15(3x + 4)
-10 + -36x + 18x2 = (60 + 85x + 30x2) + -15(3x + 4)

Reorder the terms:
-10 + -36x + 18x2 = 60 + 85x + 30x2 + -15(4 + 3x)
-10 + -36x + 18x2 = 60 + 85x + 30x2 + (4 * -15 + 3x * -15)
-10 + -36x + 18x2 = 60 + 85x + 30x2 + (-60 + -45x)

Reorder the terms:
-10 + -36x + 18x2 = 60 + -60 + 85x + -45x + 30x2

Combine like terms: 60 + -60 = 0
-10 + -36x + 18x2 = 0 + 85x + -45x + 30x2
-10 + -36x + 18x2 = 85x + -45x + 30x2

Combine like terms: 85x + -45x = 40x
-10 + -36x + 18x2 = 40x + 30x2

Solving
-10 + -36x + 18x2 = 40x + 30x2

Solving for variable 'x'.

Reorder the terms:
-10 + -36x + -40x + 18x2 + -30x2 = 40x + 30x2 + -40x + -30x2

Combine like terms: -36x + -40x = -76x
-10 + -76x + 18x2 + -30x2 = 40x + 30x2 + -40x + -30x2

Combine like terms: 18x2 + -30x2 = -12x2
-10 + -76x + -12x2 = 40x + 30x2 + -40x + -30x2

Reorder the terms:
-10 + -76x + -12x2 = 40x + -40x + 30x2 + -30x2

Combine like terms: 40x + -40x = 0
-10 + -76x + -12x2 = 0 + 30x2 + -30x2
-10 + -76x + -12x2 = 30x2 + -30x2

Combine like terms: 30x2 + -30x2 = 0
-10 + -76x + -12x2 = 0

Factor out the Greatest Common Factor (GCF), '-2'.
-2(5 + 38x + 6x2) = 0

Ignore the factor -2.

Subproblem 1

Set the factor '(5 + 38x + 6x2)' equal to zero and attempt to solve: Simplifying 5 + 38x + 6x2 = 0 Solving 5 + 38x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.8333333333 + 6.333333333x + x2 = 0 Move the constant term to the right: Add '-0.8333333333' to each side of the equation. 0.8333333333 + 6.333333333x + -0.8333333333 + x2 = 0 + -0.8333333333 Reorder the terms: 0.8333333333 + -0.8333333333 + 6.333333333x + x2 = 0 + -0.8333333333 Combine like terms: 0.8333333333 + -0.8333333333 = 0.0000000000 0.0000000000 + 6.333333333x + x2 = 0 + -0.8333333333 6.333333333x + x2 = 0 + -0.8333333333 Combine like terms: 0 + -0.8333333333 = -0.8333333333 6.333333333x + x2 = -0.8333333333 The x term is 6.333333333x. Take half its coefficient (3.166666667). Square it (10.02777778) and add it to both sides. Add '10.02777778' to each side of the equation. 6.333333333x + 10.02777778 + x2 = -0.8333333333 + 10.02777778 Reorder the terms: 10.02777778 + 6.333333333x + x2 = -0.8333333333 + 10.02777778 Combine like terms: -0.8333333333 + 10.02777778 = 9.1944444467 10.02777778 + 6.333333333x + x2 = 9.1944444467 Factor a perfect square on the left side: (x + 3.166666667)(x + 3.166666667) = 9.1944444467 Calculate the square root of the right side: 3.032234233 Break this problem into two subproblems by setting (x + 3.166666667) equal to 3.032234233 and -3.032234233.

Subproblem 1

x + 3.166666667 = 3.032234233 Simplifying x + 3.166666667 = 3.032234233 Reorder the terms: 3.166666667 + x = 3.032234233 Solving 3.166666667 + x = 3.032234233 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.166666667' to each side of the equation. 3.166666667 + -3.166666667 + x = 3.032234233 + -3.166666667 Combine like terms: 3.166666667 + -3.166666667 = 0.000000000 0.000000000 + x = 3.032234233 + -3.166666667 x = 3.032234233 + -3.166666667 Combine like terms: 3.032234233 + -3.166666667 = -0.134432434 x = -0.134432434 Simplifying x = -0.134432434

Subproblem 2

x + 3.166666667 = -3.032234233 Simplifying x + 3.166666667 = -3.032234233 Reorder the terms: 3.166666667 + x = -3.032234233 Solving 3.166666667 + x = -3.032234233 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.166666667' to each side of the equation. 3.166666667 + -3.166666667 + x = -3.032234233 + -3.166666667 Combine like terms: 3.166666667 + -3.166666667 = 0.000000000 0.000000000 + x = -3.032234233 + -3.166666667 x = -3.032234233 + -3.166666667 Combine like terms: -3.032234233 + -3.166666667 = -6.1989009 x = -6.1989009 Simplifying x = -6.1989009

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.134432434, -6.1989009}

Solution

x = {-0.134432434, -6.1989009}

See similar equations:

| 36=-3(22-y)+3(y-4) | | 3x+40-40=180-40 | | 4x+7-3x=7+4x-6 | | 7=k(8) | | (4-5y+2v)(-2)= | | C(X)=17000-20x+0.01x^2 | | 3(3x+4)=75 | | 8*x^3-16x-3= | | -2(4+(-2y))+2y=6 | | 3x+(2x+40)=180 | | -43+t=27 | | -3y+2x=5 | | ab-3a-2b=6 | | 3(4+(-2y))+4y=2 | | 2(5x-9)=12 | | -14x+7y=-9 | | 2(5x+7)=74 | | -14x+u=-9 | | 3x+5yi=15-7i | | -(n+8)+n=-6n+2(3n-4) | | 2(2x+1)=52 | | 12(3n-7)+8=-2(4-3n) | | 12+7x=4(4x+1)-1 | | 7x-1-2x=5x | | 1m+2m+3m=-15 | | 85=ln(y) | | 2x^2-8x+4m-2=0 | | 0.8x+0.12=2x-2.4 | | 3x+12=2(x-4) | | 2x-23=x+5 | | 1m+2m+9m=33 | | 2n+4n+3n=33 |

Equations solver categories