If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x + 4)(8x + 4) = 140 Reorder the terms: (4 + 3x)(8x + 4) = 140 Reorder the terms: (4 + 3x)(4 + 8x) = 140 Multiply (4 + 3x) * (4 + 8x) (4(4 + 8x) + 3x * (4 + 8x)) = 140 ((4 * 4 + 8x * 4) + 3x * (4 + 8x)) = 140 ((16 + 32x) + 3x * (4 + 8x)) = 140 (16 + 32x + (4 * 3x + 8x * 3x)) = 140 (16 + 32x + (12x + 24x2)) = 140 Combine like terms: 32x + 12x = 44x (16 + 44x + 24x2) = 140 Solving 16 + 44x + 24x2 = 140 Solving for variable 'x'. Reorder the terms: 16 + -140 + 44x + 24x2 = 140 + -140 Combine like terms: 16 + -140 = -124 -124 + 44x + 24x2 = 140 + -140 Combine like terms: 140 + -140 = 0 -124 + 44x + 24x2 = 0 Factor out the Greatest Common Factor (GCF), '4'. 4(-31 + 11x + 6x2) = 0 Ignore the factor 4.Subproblem 1
Set the factor '(-31 + 11x + 6x2)' equal to zero and attempt to solve: Simplifying -31 + 11x + 6x2 = 0 Solving -31 + 11x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. -5.166666667 + 1.833333333x + x2 = 0 Move the constant term to the right: Add '5.166666667' to each side of the equation. -5.166666667 + 1.833333333x + 5.166666667 + x2 = 0 + 5.166666667 Reorder the terms: -5.166666667 + 5.166666667 + 1.833333333x + x2 = 0 + 5.166666667 Combine like terms: -5.166666667 + 5.166666667 = 0.000000000 0.000000000 + 1.833333333x + x2 = 0 + 5.166666667 1.833333333x + x2 = 0 + 5.166666667 Combine like terms: 0 + 5.166666667 = 5.166666667 1.833333333x + x2 = 5.166666667 The x term is 1.833333333x. Take half its coefficient (0.9166666665). Square it (0.8402777775) and add it to both sides. Add '0.8402777775' to each side of the equation. 1.833333333x + 0.8402777775 + x2 = 5.166666667 + 0.8402777775 Reorder the terms: 0.8402777775 + 1.833333333x + x2 = 5.166666667 + 0.8402777775 Combine like terms: 5.166666667 + 0.8402777775 = 6.0069444445 0.8402777775 + 1.833333333x + x2 = 6.0069444445 Factor a perfect square on the left side: (x + 0.9166666665)(x + 0.9166666665) = 6.0069444445 Calculate the square root of the right side: 2.450906862 Break this problem into two subproblems by setting (x + 0.9166666665) equal to 2.450906862 and -2.450906862.Subproblem 1
x + 0.9166666665 = 2.450906862 Simplifying x + 0.9166666665 = 2.450906862 Reorder the terms: 0.9166666665 + x = 2.450906862 Solving 0.9166666665 + x = 2.450906862 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.9166666665' to each side of the equation. 0.9166666665 + -0.9166666665 + x = 2.450906862 + -0.9166666665 Combine like terms: 0.9166666665 + -0.9166666665 = 0.0000000000 0.0000000000 + x = 2.450906862 + -0.9166666665 x = 2.450906862 + -0.9166666665 Combine like terms: 2.450906862 + -0.9166666665 = 1.5342401955 x = 1.5342401955 Simplifying x = 1.5342401955Subproblem 2
x + 0.9166666665 = -2.450906862 Simplifying x + 0.9166666665 = -2.450906862 Reorder the terms: 0.9166666665 + x = -2.450906862 Solving 0.9166666665 + x = -2.450906862 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.9166666665' to each side of the equation. 0.9166666665 + -0.9166666665 + x = -2.450906862 + -0.9166666665 Combine like terms: 0.9166666665 + -0.9166666665 = 0.0000000000 0.0000000000 + x = -2.450906862 + -0.9166666665 x = -2.450906862 + -0.9166666665 Combine like terms: -2.450906862 + -0.9166666665 = -3.3675735285 x = -3.3675735285 Simplifying x = -3.3675735285Solution
The solution to the problem is based on the solutions from the subproblems. x = {1.5342401955, -3.3675735285}Solution
x = {1.5342401955, -3.3675735285}
| 4cos(x)-1=3cos(x)+4 | | (3x+4)+8x+4=140 | | 22-2(6x-11)=-4 | | Q^2-20Q+75=0 | | cos(x)-1=3cos(x)+4 | | 4x+24=15x-9 | | sen(6x)+sen(4x)=o | | 2x-12=9x-12 | | 2(m+3)=27 | | (5s^2-4d^2)(5s^2-4d^2)= | | (x^2+3x-4)(x^2-x+3)= | | 4-x-11=9+4x | | -4x^4+8x^3=0 | | (x+2)(x-1)=154 | | -4(t-2)+6t=5t-8 | | 0.06(3x+50)=21 | | 1x+25y=190 | | 87-x=59 | | 192-x=45 | | 2w-26+37-2w= | | X-131=122 | | 51=x-113 | | (w+g)x(w^2-wg+g^2)= | | (w+g)(w^2-wg+g^2)= | | 53=x+28 | | 2z(z+1)+3(z+2)=3z(z+2) | | (w^2-10w+5)-(-4w^2-10w+4)+(-3w+9w-7)= | | 4.29x^2-10.88+3.57=0 | | sqrtx+3=2x | | m+10/3=1 | | 5x^2-5x+3= | | (4a+9)(5a^2-7a+6)= |