(3x+4)/3-4x(x-4)=x

Simple and best practice solution for (3x+4)/3-4x(x-4)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+4)/3-4x(x-4)=x equation:



(3x+4)/3-4x(x-4)=x
We move all terms to the left:
(3x+4)/3-4x(x-4)-(x)=0
We add all the numbers together, and all the variables
-1x+(3x+4)/3-4x(x-4)=0
We multiply parentheses
-4x^2-1x+(3x+4)/3+16x=0
We multiply all the terms by the denominator
-4x^2*3-1x*3+(3x+4)+16x*3=0
Wy multiply elements
-12x^2-3x+(3x+4)+48x=0
We get rid of parentheses
-12x^2-3x+3x+48x+4=0
We add all the numbers together, and all the variables
-12x^2+48x+4=0
a = -12; b = 48; c = +4;
Δ = b2-4ac
Δ = 482-4·(-12)·4
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{39}}{2*-12}=\frac{-48-8\sqrt{39}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{39}}{2*-12}=\frac{-48+8\sqrt{39}}{-24} $

See similar equations:

| 3(x-4)+5=9x+1 | | 3x+-75=0 | | 1/10(n+15)=33/5 | | 0z2+z−6=0 | | 4(x+1)=3(x-1 | | F(x)=2x^2-6x=4 | | 0,27x+8,11=0,88x-2,16 | | 7x/3=5x/2+3 | | x+3.7=5.4 | | 9x=27=-72 | | 11y-5=y | | x-3.6=14 | | 11+6x+5=x | | 4/6=3x-5 | | 6-2x+5x=7x+7x-15 | | s0.5s+1=7+4.5s | | 5x+5+2x=25 | | 7x+x^2=18 | | 7x+3x+2x=1764 | | (2x-1)÷x^2-4=1 | | -5y-41=-1 | | 2(4x-2)=-4+8x | | 19-2(3x-1)/5=x=2 | | Y=-4x-22 | | 6x-1/2x+3=5/3 | | x-1/5=2/3 | | 8x^2-3x+15=0 | | -9=(x-2) | | x+15=288 | | 2(2n+5=12 | | 4(5x-7)-3=20x-31 | | 1/3p-5/6=1/2+2p |

Equations solver categories