(3x+5)(3x+5)=(x+1)(x+1)

Simple and best practice solution for (3x+5)(3x+5)=(x+1)(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+5)(3x+5)=(x+1)(x+1) equation:



(3x+5)(3x+5)=(x+1)(x+1)
We move all terms to the left:
(3x+5)(3x+5)-((x+1)(x+1))=0
We multiply parentheses ..
(+9x^2+15x+15x+25)-((x+1)(x+1))=0
We calculate terms in parentheses: -((x+1)(x+1)), so:
(x+1)(x+1)
We multiply parentheses ..
(+x^2+x+x+1)
We get rid of parentheses
x^2+x+x+1
We add all the numbers together, and all the variables
x^2+2x+1
Back to the equation:
-(x^2+2x+1)
We get rid of parentheses
9x^2-x^2+15x+15x-2x+25-1=0
We add all the numbers together, and all the variables
8x^2+28x+24=0
a = 8; b = 28; c = +24;
Δ = b2-4ac
Δ = 282-4·8·24
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4}{2*8}=\frac{-32}{16} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4}{2*8}=\frac{-24}{16} =-1+1/2 $

See similar equations:

| 4+-c=12 | | 5+x=-24 | | 34=8x-30 | | 2p-2-5p=10 | | 16.02=3g+3.63 | | 11y-4-2y=59 | | 11x+77=30x-40-6x | | -6y+12=2(y-2) | | 5x–3=2–(3x–3) | | 8x-20/12=2x-7 | | 2x-4(x-2)=-4+3x-3 | | (-1/5)n+7=2 | | -4x+7+5x=15 | | 2(v+6)=-4v+18 | | 2x^2-2x+33=0 | | 6b+7=-14 | | 10y=3y+56 | | 12x-10=40+2x | | -30=10+n | | {2}{3}x+6=-12 | | 3(x-2)+10=-480 | | 5+5x+2=-2 | | 2m+6=2(5+m) | | -20=-4x-6x-20 | | 18=-8w+6(w+4) | | -3.3p-8.27=-1.3p+14.13 | | 5x-55=17 | | -5b+7=-38 | | -41=-4b-9 | | 10/20x-15/20=12/20x | | -2|3x+7|-9=-13 | | p-39=76 |

Equations solver categories