If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x + 5y)(2x + 6y) = 0 Multiply (3x + 5y) * (2x + 6y) (3x * (2x + 6y) + 5y * (2x + 6y)) = 0 ((2x * 3x + 6y * 3x) + 5y * (2x + 6y)) = 0 Reorder the terms: ((18xy + 6x2) + 5y * (2x + 6y)) = 0 ((18xy + 6x2) + 5y * (2x + 6y)) = 0 (18xy + 6x2 + (2x * 5y + 6y * 5y)) = 0 (18xy + 6x2 + (10xy + 30y2)) = 0 Reorder the terms: (18xy + 10xy + 6x2 + 30y2) = 0 Combine like terms: 18xy + 10xy = 28xy (28xy + 6x2 + 30y2) = 0 Solving 28xy + 6x2 + 30y2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '2'. 2(14xy + 3x2 + 15y2) = 0 Factor a trinomial. 2((3x + 5y)(x + 3y)) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(3x + 5y)' equal to zero and attempt to solve: Simplifying 3x + 5y = 0 Solving 3x + 5y = 0 Move all terms containing x to the left, all other terms to the right. Add '-5y' to each side of the equation. 3x + 5y + -5y = 0 + -5y Combine like terms: 5y + -5y = 0 3x + 0 = 0 + -5y 3x = 0 + -5y Remove the zero: 3x = -5y Divide each side by '3'. x = -1.666666667y Simplifying x = -1.666666667ySubproblem 2
Set the factor '(x + 3y)' equal to zero and attempt to solve: Simplifying x + 3y = 0 Solving x + 3y = 0 Move all terms containing x to the left, all other terms to the right. Add '-3y' to each side of the equation. x + 3y + -3y = 0 + -3y Combine like terms: 3y + -3y = 0 x + 0 = 0 + -3y x = 0 + -3y Remove the zero: x = -3y Simplifying x = -3ySolution
x = {-1.666666667y, -3y}
| x^5-7x^3+6=0 | | 5q-3.75=26.2 | | -5x+45=45 | | (-5x+45)+(7x+31)=90 | | 5x-(13-x)=-24 | | x^2+2x-2017=0 | | x^2+2x-2014=0 | | 12n^2-11n+15=0 | | 10=x-3y | | h(x)=3x^2-5x+4 | | 240=w*6 | | 64a^2-121g^2=0 | | 6x-8+13x=7x+x+14 | | 14y-12=-10+12y | | (25x^-3y^10)/35x^5y^2 | | 20=2m+10 | | (-8x-7)/3=-11 | | 4f+11=19 | | 7=13-3z | | 7+3z=16 | | 3e-3/4 | | 7+7z=16 | | 3=4s-9 | | 7t-4=-104 | | 5y-5=3y+25 | | 15x=8x-14 | | p=80-qd | | 7=2f-3 | | 9a^2+17a-2=0 | | -7(x+5)-5=-3(x-8) | | -6(-8m-5)=7(6+6m) | | (X+y)x(x-y)=17 |