(3x+6)(x+4)=400

Simple and best practice solution for (3x+6)(x+4)=400 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+6)(x+4)=400 equation:


Simplifying
(3x + 6)(x + 4) = 400

Reorder the terms:
(6 + 3x)(x + 4) = 400

Reorder the terms:
(6 + 3x)(4 + x) = 400

Multiply (6 + 3x) * (4 + x)
(6(4 + x) + 3x * (4 + x)) = 400
((4 * 6 + x * 6) + 3x * (4 + x)) = 400
((24 + 6x) + 3x * (4 + x)) = 400
(24 + 6x + (4 * 3x + x * 3x)) = 400
(24 + 6x + (12x + 3x2)) = 400

Combine like terms: 6x + 12x = 18x
(24 + 18x + 3x2) = 400

Solving
24 + 18x + 3x2 = 400

Solving for variable 'x'.

Reorder the terms:
24 + -400 + 18x + 3x2 = 400 + -400

Combine like terms: 24 + -400 = -376
-376 + 18x + 3x2 = 400 + -400

Combine like terms: 400 + -400 = 0
-376 + 18x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-125.3333333 + 6x + x2 = 0

Move the constant term to the right:

Add '125.3333333' to each side of the equation.
-125.3333333 + 6x + 125.3333333 + x2 = 0 + 125.3333333

Reorder the terms:
-125.3333333 + 125.3333333 + 6x + x2 = 0 + 125.3333333

Combine like terms: -125.3333333 + 125.3333333 = 0.0000000
0.0000000 + 6x + x2 = 0 + 125.3333333
6x + x2 = 0 + 125.3333333

Combine like terms: 0 + 125.3333333 = 125.3333333
6x + x2 = 125.3333333

The x term is 6x.  Take half its coefficient (3).
Square it (9) and add it to both sides.

Add '9' to each side of the equation.
6x + 9 + x2 = 125.3333333 + 9

Reorder the terms:
9 + 6x + x2 = 125.3333333 + 9

Combine like terms: 125.3333333 + 9 = 134.3333333
9 + 6x + x2 = 134.3333333

Factor a perfect square on the left side:
(x + 3)(x + 3) = 134.3333333

Calculate the square root of the right side: 11.590225766

Break this problem into two subproblems by setting 
(x + 3) equal to 11.590225766 and -11.590225766.

Subproblem 1

x + 3 = 11.590225766 Simplifying x + 3 = 11.590225766 Reorder the terms: 3 + x = 11.590225766 Solving 3 + x = 11.590225766 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + -3 + x = 11.590225766 + -3 Combine like terms: 3 + -3 = 0 0 + x = 11.590225766 + -3 x = 11.590225766 + -3 Combine like terms: 11.590225766 + -3 = 8.590225766 x = 8.590225766 Simplifying x = 8.590225766

Subproblem 2

x + 3 = -11.590225766 Simplifying x + 3 = -11.590225766 Reorder the terms: 3 + x = -11.590225766 Solving 3 + x = -11.590225766 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + -3 + x = -11.590225766 + -3 Combine like terms: 3 + -3 = 0 0 + x = -11.590225766 + -3 x = -11.590225766 + -3 Combine like terms: -11.590225766 + -3 = -14.590225766 x = -14.590225766 Simplifying x = -14.590225766

Solution

The solution to the problem is based on the solutions from the subproblems. x = {8.590225766, -14.590225766}

See similar equations:

| -3n+36=3(n+8)-8n | | 6In(5-2x)=12 | | 3x=x-692 | | 6[c+4]=4c-16 | | 0=-15x^2-10x+40 | | (11b-9)-5(2b+3)=-3 | | 4x-2+6-5x=10-3+2x | | 2x^2-36=60 | | (2x^3)-4x=0 | | -13x+7(3x-1)=-63 | | 4x+3y=402 | | g(x)=0.25(8) | | 128^-2/7 | | 4x^4+11x^2+9=0 | | 0.4x-8=0.7x+1 | | 1-2x=1+x^2 | | 5m^2+11m+15=0 | | 4/7w-3=7 | | 3-2x+2=12 | | (y-2)^(1/2) | | C+2=C | | y^(1/2)=9 | | 8.6×51/4 | | 6.17=x/100-x | | X^3+3x+14=0 | | 3z+z+4=8 | | -9(6+u)-2y=-10 | | f(x)=18x^5 | | -41-50-60= | | -19-73= | | (9/z)-(3/-z) | | -40-35= |

Equations solver categories