(3x+60)+(1/4x+55)=180

Simple and best practice solution for (3x+60)+(1/4x+55)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+60)+(1/4x+55)=180 equation:



(3x+60)+(1/4x+55)=180
We move all terms to the left:
(3x+60)+(1/4x+55)-(180)=0
Domain of the equation: 4x+55)!=0
x∈R
We get rid of parentheses
3x+1/4x+60+55-180=0
We multiply all the terms by the denominator
3x*4x+60*4x+55*4x-180*4x+1=0
Wy multiply elements
12x^2+240x+220x-720x+1=0
We add all the numbers together, and all the variables
12x^2-260x+1=0
a = 12; b = -260; c = +1;
Δ = b2-4ac
Δ = -2602-4·12·1
Δ = 67552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{67552}=\sqrt{16*4222}=\sqrt{16}*\sqrt{4222}=4\sqrt{4222}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-260)-4\sqrt{4222}}{2*12}=\frac{260-4\sqrt{4222}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-260)+4\sqrt{4222}}{2*12}=\frac{260+4\sqrt{4222}}{24} $

See similar equations:

| 2=67p | | 5w-40=2w+8 | | 37+7p-4p=-p+3(4p+4)-3p | | 5-2(x-7)=3x-x+7 | | 7(x+9)=9x+7-2x+56 | | -7(8x-13)-34=15x+57 | | (x+6)3=3 | | 1=-3x+28 | | 19=-13-4(3w+1) | | -7(s+2)-12=37 | | (8x−41)+(9x+17)=180 | | X2+2x=104 | | 15.4=4n-5 | | 3(-9a-21)+11=8(a-1)-9 | | -18=3(-36+6)+2z | | 7x-7=-3x | | -256=-16(p+4) | | 60=(b)0.4 | | 7+1/x=8 | | 3/8+3d=4(d-5) | | 9(5s+11)-20=-11 | | (5x)-5=90 | | 4.7+1.5n=1.40 | | 2x+26=6 | | 5×11=12-q | | -3(-2x+23)+12=6(-4x+9)+9 | | 4.7+1.5n=1.4 | | -8(3n+7)+24=40 | | -6x=-12=18 | | 1/3(12x+24)=-1/4(36x-28) | | -6+2x=13x+10 | | 8(-n-18)+37=-8(-4n-8)-11 |

Equations solver categories