(3x+7)(x+1)=10

Simple and best practice solution for (3x+7)(x+1)=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+7)(x+1)=10 equation:


Simplifying
(3x + 7)(x + 1) = 10

Reorder the terms:
(7 + 3x)(x + 1) = 10

Reorder the terms:
(7 + 3x)(1 + x) = 10

Multiply (7 + 3x) * (1 + x)
(7(1 + x) + 3x * (1 + x)) = 10
((1 * 7 + x * 7) + 3x * (1 + x)) = 10
((7 + 7x) + 3x * (1 + x)) = 10
(7 + 7x + (1 * 3x + x * 3x)) = 10
(7 + 7x + (3x + 3x2)) = 10

Combine like terms: 7x + 3x = 10x
(7 + 10x + 3x2) = 10

Solving
7 + 10x + 3x2 = 10

Solving for variable 'x'.

Reorder the terms:
7 + -10 + 10x + 3x2 = 10 + -10

Combine like terms: 7 + -10 = -3
-3 + 10x + 3x2 = 10 + -10

Combine like terms: 10 + -10 = 0
-3 + 10x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1 + 3.333333333x + x2 = 0

Move the constant term to the right:

Add '1' to each side of the equation.
-1 + 3.333333333x + 1 + x2 = 0 + 1

Reorder the terms:
-1 + 1 + 3.333333333x + x2 = 0 + 1

Combine like terms: -1 + 1 = 0
0 + 3.333333333x + x2 = 0 + 1
3.333333333x + x2 = 0 + 1

Combine like terms: 0 + 1 = 1
3.333333333x + x2 = 1

The x term is 3.333333333x.  Take half its coefficient (1.666666667).
Square it (2.777777779) and add it to both sides.

Add '2.777777779' to each side of the equation.
3.333333333x + 2.777777779 + x2 = 1 + 2.777777779

Reorder the terms:
2.777777779 + 3.333333333x + x2 = 1 + 2.777777779

Combine like terms: 1 + 2.777777779 = 3.777777779
2.777777779 + 3.333333333x + x2 = 3.777777779

Factor a perfect square on the left side:
(x + 1.666666667)(x + 1.666666667) = 3.777777779

Calculate the square root of the right side: 1.943650632

Break this problem into two subproblems by setting 
(x + 1.666666667) equal to 1.943650632 and -1.943650632.

Subproblem 1

x + 1.666666667 = 1.943650632 Simplifying x + 1.666666667 = 1.943650632 Reorder the terms: 1.666666667 + x = 1.943650632 Solving 1.666666667 + x = 1.943650632 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + x = 1.943650632 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + x = 1.943650632 + -1.666666667 x = 1.943650632 + -1.666666667 Combine like terms: 1.943650632 + -1.666666667 = 0.276983965 x = 0.276983965 Simplifying x = 0.276983965

Subproblem 2

x + 1.666666667 = -1.943650632 Simplifying x + 1.666666667 = -1.943650632 Reorder the terms: 1.666666667 + x = -1.943650632 Solving 1.666666667 + x = -1.943650632 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + x = -1.943650632 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + x = -1.943650632 + -1.666666667 x = -1.943650632 + -1.666666667 Combine like terms: -1.943650632 + -1.666666667 = -3.610317299 x = -3.610317299 Simplifying x = -3.610317299

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.276983965, -3.610317299}

See similar equations:

| 9-41= | | x^2-30x+125=0 | | 2x(x+8)+15=0 | | g^2-8g+11=0 | | 2x-5y=1 | | 5(x+6)=8+5x | | 3x^2+2x+8=0 | | d^2+22d+121=18 | | 8x+3y=8 | | 9x^10=4x^9+41 | | b^2-8b+17=7 | | 15x^2=3x+7 | | 4p+3=10+3p | | 4p+3=10+3 | | 7x+2y=2 | | 4x+16-18=-8x+2 | | 6.8x-1=5.8x | | 60x^2*y^4=x | | 5x+y=13 | | m^2+14=8m | | -5p^2=30p+40 | | 7(x+9)=4[x-(8-x)] | | 4(3+5x)-4=3+2(x-2) | | 5(x-2)+19=4(x+3) | | m^2+6m=-5 | | m^2=3m+4 | | 91-2x=3x+16 | | 13y-4=19y+2 | | 9x-3=1+8x | | 24-4x=-32 | | 6x=5x | | 1+4x=34+x |

Equations solver categories