If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+9)(3x+9)=2x+2(2x+2+27)
We move all terms to the left:
(3x+9)(3x+9)-(2x+2(2x+2+27))=0
We add all the numbers together, and all the variables
(3x+9)(3x+9)-(2x+2(2x+29))=0
We multiply parentheses ..
(+9x^2+27x+27x+81)-(2x+2(2x+29))=0
We calculate terms in parentheses: -(2x+2(2x+29)), so:We get rid of parentheses
2x+2(2x+29)
We multiply parentheses
2x+4x+58
We add all the numbers together, and all the variables
6x+58
Back to the equation:
-(6x+58)
9x^2+27x+27x-6x+81-58=0
We add all the numbers together, and all the variables
9x^2+48x+23=0
a = 9; b = 48; c = +23;
Δ = b2-4ac
Δ = 482-4·9·23
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-6\sqrt{41}}{2*9}=\frac{-48-6\sqrt{41}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+6\sqrt{41}}{2*9}=\frac{-48+6\sqrt{41}}{18} $
| 3x-24=25 | | -8h-12=-6h+20 | | 1q+6=3q | | 3x+3(8x-9)-7x=3=x= | | 3=17-5/4x | | 17s+8=8 | | 3(6y)-8y=-50 | | y-4y+3=-33 | | 17+7j=6j | | 4a+6=0 | | -40=-10s | | 5j-j-2=14 | | 5x+7(2x-8)=3x+8=x= | | -8a+18a=10 | | 8(-y)+3y=40 | | 6x+82=124 | | 5.58-a/1.2=0.38 | | 5x=0.5(x+36) | | 24x-1=5x | | 13.9x+18.16=-17.51+5.2x | | 5(n–3)=2n-6 | | 5(8x-7)=5(2x-25) | | -10x=-5x-10 | | 5(4x-8)+2x=4x-4=x= | | 4w+8=6w–4= | | y+6y+18y=180 | | 13.9x+18.16=17.51+5.2x | | 24x-3=5x | | -3x+12=6x-12 | | 4w+8=6w–4 | | 14k-12=18+11k | | -x=-8x-49 |