If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x-1)(3x+1)-(1-x)(1+x)+3(1-2x)(1+2x)=-199
We move all terms to the left:
(3x-1)(3x+1)-(1-x)(1+x)+3(1-2x)(1+2x)-(-199)=0
We add all the numbers together, and all the variables
(3x-1)(3x+1)-(-1x+1)(x+1)+3(-2x+1)(2x+1)-(-199)=0
We add all the numbers together, and all the variables
(3x-1)(3x+1)-(-1x+1)(x+1)+3(-2x+1)(2x+1)+199=0
We use the square of the difference formula
9x^2-(-1x+1)(x+1)+3(-2x+1)(2x+1)-1+199=0
We multiply parentheses ..
9x^2-(-1x^2-1x+x+1)+3(-2x+1)(2x+1)-1+199=0
We add all the numbers together, and all the variables
9x^2-(-1x^2-1x+x+1)+3(-2x+1)(2x+1)+198=0
We get rid of parentheses
9x^2+1x^2+1x-x+3(-2x+1)(2x+1)-1+198=0
We multiply parentheses ..
9x^2+1x^2+3(-4x^2-2x+2x+1)+1x-x-1+198=0
We add all the numbers together, and all the variables
10x^2+3(-4x^2-2x+2x+1)+197=0
We multiply parentheses
10x^2-12x^2-6x+6x+3+197=0
We add all the numbers together, and all the variables
-2x^2+200=0
a = -2; b = 0; c = +200;
Δ = b2-4ac
Δ = 02-4·(-2)·200
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*-2}=\frac{-40}{-4} =+10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*-2}=\frac{40}{-4} =-10 $
| 5(t=3) | | 10=5(w-4)-8w | | Y-9=24;y=18 | | 3(2p+5)=24 | | b+7.7=39 | | 4/5a-2/3=3a+1/2 | | 7-x+2/5=x/7 | | 7(g-4=)=3 | | -2(1-7b)=-114 | | 3.5x+3.5x+2x+x=30 | | 9x+79=23x-5 | | -8=4(5)+b | | 4(x+2)-2=30 | | 8*n+4=26 | | 2(3t-2)=4(7t-1) | | K(x)=-x^2-2x+15 | | 3x+7/5+x+50/7=13 | | -1-3a^2=-4- | | 3c+12=33 | | 9(t+2=3(t-2) | | (m)(m-2)=0 | | -x2+11x-30=0 | | -x2+2x+24=0 | | 3(1-x)=2x-6(6x+3) | | -x2-x+30=0 | | 15+10x4=Y | | 35t+5=180 | | -x2-11x-28=0 | | 2(x+3)=x+16# | | 1-7(4x-1)=6(-2x-3)-4 | | W^2-2w=120 | | P=2x19+2x99 |