(3x-2)(x+3)=(2x+9)(x-1)+7

Simple and best practice solution for (3x-2)(x+3)=(2x+9)(x-1)+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-2)(x+3)=(2x+9)(x-1)+7 equation:



(3x-2)(x+3)=(2x+9)(x-1)+7
We move all terms to the left:
(3x-2)(x+3)-((2x+9)(x-1)+7)=0
We multiply parentheses ..
(+3x^2+9x-2x-6)-((2x+9)(x-1)+7)=0
We calculate terms in parentheses: -((2x+9)(x-1)+7), so:
(2x+9)(x-1)+7
We multiply parentheses ..
(+2x^2-2x+9x-9)+7
We get rid of parentheses
2x^2-2x+9x-9+7
We add all the numbers together, and all the variables
2x^2+7x-2
Back to the equation:
-(2x^2+7x-2)
We get rid of parentheses
3x^2-2x^2+9x-2x-7x-6+2=0
We add all the numbers together, and all the variables
x^2-4=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $

See similar equations:

| .1/2(8x+26)=13+4x | | 6x+14=4(x+9) | | 12-8n=8-10 | | 6x+19=4(x+9) | | (X-2)(x-2)=3(2x-3)(2-x) | | 7x-17=28-2x | | (2x-1)(x+1)=4(1+x)(1-x)-6x | | 5x=30*5 | | 2/x(x)+3x-2=1 | | 5*5x=80 | | 8/x-5=x+2 | | 5x=80/5 | | 5x=80-5 | | 3z/10-9=5 | | 5x/5=80 | | 5x*5=80 | | 3x+1.257=40 | | 8x-23=3x+27 | | (2x+3)(2x+3)=5(2x+3) | | K-3=3k-5 | | (X-3)(x-3)=7(x-3) | | X(x)-x+0.25=0 | | 3^2x+3^(X+1)=810 | | 5-3x(x)=x(3x-13) | | x*8/15=1 | | X(5-x)=-36 | | 10x+30=x+12 | | (X)(x)+0.5x=3 | | (2x-1)(x+3)-15=0 | | (X-4)(x-4)=4x-11 | | (X-1)(x-1)-(x-1)=0 | | x^4+2x^3+2x+1=0 |

Equations solver categories