(3x-20)(x-20)=120

Simple and best practice solution for (3x-20)(x-20)=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-20)(x-20)=120 equation:


Simplifying
(3x + -20)(x + -20) = 120

Reorder the terms:
(-20 + 3x)(x + -20) = 120

Reorder the terms:
(-20 + 3x)(-20 + x) = 120

Multiply (-20 + 3x) * (-20 + x)
(-20(-20 + x) + 3x * (-20 + x)) = 120
((-20 * -20 + x * -20) + 3x * (-20 + x)) = 120
((400 + -20x) + 3x * (-20 + x)) = 120
(400 + -20x + (-20 * 3x + x * 3x)) = 120
(400 + -20x + (-60x + 3x2)) = 120

Combine like terms: -20x + -60x = -80x
(400 + -80x + 3x2) = 120

Solving
400 + -80x + 3x2 = 120

Solving for variable 'x'.

Reorder the terms:
400 + -120 + -80x + 3x2 = 120 + -120

Combine like terms: 400 + -120 = 280
280 + -80x + 3x2 = 120 + -120

Combine like terms: 120 + -120 = 0
280 + -80x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
93.33333333 + -26.66666667x + x2 = 0

Move the constant term to the right:

Add '-93.33333333' to each side of the equation.
93.33333333 + -26.66666667x + -93.33333333 + x2 = 0 + -93.33333333

Reorder the terms:
93.33333333 + -93.33333333 + -26.66666667x + x2 = 0 + -93.33333333

Combine like terms: 93.33333333 + -93.33333333 = 0.00000000
0.00000000 + -26.66666667x + x2 = 0 + -93.33333333
-26.66666667x + x2 = 0 + -93.33333333

Combine like terms: 0 + -93.33333333 = -93.33333333
-26.66666667x + x2 = -93.33333333

The x term is -26.66666667x.  Take half its coefficient (-13.33333334).
Square it (177.7777780) and add it to both sides.

Add '177.7777780' to each side of the equation.
-26.66666667x + 177.7777780 + x2 = -93.33333333 + 177.7777780

Reorder the terms:
177.7777780 + -26.66666667x + x2 = -93.33333333 + 177.7777780

Combine like terms: -93.33333333 + 177.7777780 = 84.44444467
177.7777780 + -26.66666667x + x2 = 84.44444467

Factor a perfect square on the left side:
(x + -13.33333334)(x + -13.33333334) = 84.44444467

Calculate the square root of the right side: 9.189365847

Break this problem into two subproblems by setting 
(x + -13.33333334) equal to 9.189365847 and -9.189365847.

Subproblem 1

x + -13.33333334 = 9.189365847 Simplifying x + -13.33333334 = 9.189365847 Reorder the terms: -13.33333334 + x = 9.189365847 Solving -13.33333334 + x = 9.189365847 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '13.33333334' to each side of the equation. -13.33333334 + 13.33333334 + x = 9.189365847 + 13.33333334 Combine like terms: -13.33333334 + 13.33333334 = 0.00000000 0.00000000 + x = 9.189365847 + 13.33333334 x = 9.189365847 + 13.33333334 Combine like terms: 9.189365847 + 13.33333334 = 22.522699187 x = 22.522699187 Simplifying x = 22.522699187

Subproblem 2

x + -13.33333334 = -9.189365847 Simplifying x + -13.33333334 = -9.189365847 Reorder the terms: -13.33333334 + x = -9.189365847 Solving -13.33333334 + x = -9.189365847 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '13.33333334' to each side of the equation. -13.33333334 + 13.33333334 + x = -9.189365847 + 13.33333334 Combine like terms: -13.33333334 + 13.33333334 = 0.00000000 0.00000000 + x = -9.189365847 + 13.33333334 x = -9.189365847 + 13.33333334 Combine like terms: -9.189365847 + 13.33333334 = 4.143967493 x = 4.143967493 Simplifying x = 4.143967493

Solution

The solution to the problem is based on the solutions from the subproblems. x = {22.522699187, 4.143967493}

See similar equations:

| 5x-7=-21-2x | | 25=3(7a+1) | | 82x+17y=1 | | 17x+23y=4 | | 24=-2s | | 3x+y+2z=8 | | 2x-7x+8=2 | | 4.9t^2+10t-65=0 | | 3x+2y-x= | | G2x=(360/4) | | ifp(x)=2x+5findp(x)+p(-x) | | 9+4x=-1-2x | | 3x+42=9x+18 | | 36=-4p+4 | | 0=2[x-(4-x)]-3(x+1) | | 5x-62=3x+20 | | 2w^3-20w^2x+50wx^2=0 | | X-60=140 | | (x+2)2+(y-12)2=169 | | Y*Y=24000 | | E+p=1000 | | x^2-6x^1-16=0 | | 6z-7+3(z+9)= | | 6(x-7)-12x=48 | | y+5=0.27(x+13) | | -x^2-y^2+9=0 | | 5z+4-3z+(-7)= | | x^2-13x+204=0 | | 6d^2+19d+20=0 | | -2+19=3x-1 | | 2x-5=y-1 | | y+2=-1.83(x-5) |

Equations solver categories