(3x-20)+(2/3x)=90

Simple and best practice solution for (3x-20)+(2/3x)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-20)+(2/3x)=90 equation:



(3x-20)+(2/3x)=90
We move all terms to the left:
(3x-20)+(2/3x)-(90)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(3x-20)+(+2/3x)-90=0
We get rid of parentheses
3x+2/3x-20-90=0
We multiply all the terms by the denominator
3x*3x-20*3x-90*3x+2=0
Wy multiply elements
9x^2-60x-270x+2=0
We add all the numbers together, and all the variables
9x^2-330x+2=0
a = 9; b = -330; c = +2;
Δ = b2-4ac
Δ = -3302-4·9·2
Δ = 108828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108828}=\sqrt{36*3023}=\sqrt{36}*\sqrt{3023}=6\sqrt{3023}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-330)-6\sqrt{3023}}{2*9}=\frac{330-6\sqrt{3023}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-330)+6\sqrt{3023}}{2*9}=\frac{330+6\sqrt{3023}}{18} $

See similar equations:

| 25=(3.5)t | | 7x-12-x=2 | | -8+10x=7x+10 | | 5x6+13(3+x)=36 | | 2(m+6)=40 | | y+72=5y | | (5x)+x=90 | | 3(x+10)+5x=-10 | | -981/2+1001/4=x | | −9−7x=23−7x | | 48.5-24.8=p | | −9−7|=23−7x | | 6/x=48/64 | | n+2n-3=84 | | 6/x-2=+3 | | 8(x−4)+14=8x−18 | | 6/x-2=3 | | (16x)+(4x)=180 | | m2-4m=0 | | 90+60x=400 | | 90x+60x=180 | | 2x+29=x+25 | | 30+15+45+60x=400 | | (16x^2)+(4x^2)=180 | | −5(2x−15)=2(x−32)−5 | | 1/16(x-44)=1+x | | 5y-7=6y-11 | | 17=3+6n-4 | | 0.0625(x-44)=1+x | | 10u-u+81=9 | | 3=m-83/4 | | 2x-6956=82x |

Equations solver categories