(3x-2y+1)dx+(6x-4y+1)dy=0

Simple and best practice solution for (3x-2y+1)dx+(6x-4y+1)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-2y+1)dx+(6x-4y+1)dy=0 equation:


Simplifying
(3x + -2y + 1) * dx + (6x + -4y + 1) * dy = 0

Reorder the terms:
(1 + 3x + -2y) * dx + (6x + -4y + 1) * dy = 0

Reorder the terms for easier multiplication:
dx(1 + 3x + -2y) + (6x + -4y + 1) * dy = 0
(1 * dx + 3x * dx + -2y * dx) + (6x + -4y + 1) * dy = 0

Reorder the terms:
(1dx + -2dxy + 3dx2) + (6x + -4y + 1) * dy = 0
(1dx + -2dxy + 3dx2) + (6x + -4y + 1) * dy = 0

Reorder the terms:
1dx + -2dxy + 3dx2 + (1 + 6x + -4y) * dy = 0

Reorder the terms for easier multiplication:
1dx + -2dxy + 3dx2 + dy(1 + 6x + -4y) = 0
1dx + -2dxy + 3dx2 + (1 * dy + 6x * dy + -4y * dy) = 0

Reorder the terms:
1dx + -2dxy + 3dx2 + (6dxy + 1dy + -4dy2) = 0
1dx + -2dxy + 3dx2 + (6dxy + 1dy + -4dy2) = 0

Reorder the terms:
1dx + -2dxy + 6dxy + 3dx2 + 1dy + -4dy2 = 0

Combine like terms: -2dxy + 6dxy = 4dxy
1dx + 4dxy + 3dx2 + 1dy + -4dy2 = 0

Solving
1dx + 4dxy + 3dx2 + 1dy + -4dy2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(x + 4xy + 3x2 + y + -4y2) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(x + 4xy + 3x2 + y + -4y2)' equal to zero and attempt to solve: Simplifying x + 4xy + 3x2 + y + -4y2 = 0 Solving x + 4xy + 3x2 + y + -4y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-1x' to each side of the equation. x + 4xy + 3x2 + y + -1x + -4y2 = 0 + -1x Reorder the terms: x + -1x + 4xy + 3x2 + y + -4y2 = 0 + -1x Combine like terms: x + -1x = 0 0 + 4xy + 3x2 + y + -4y2 = 0 + -1x 4xy + 3x2 + y + -4y2 = 0 + -1x Remove the zero: 4xy + 3x2 + y + -4y2 = -1x Add '-4xy' to each side of the equation. 4xy + 3x2 + y + -4xy + -4y2 = -1x + -4xy Reorder the terms: 4xy + -4xy + 3x2 + y + -4y2 = -1x + -4xy Combine like terms: 4xy + -4xy = 0 0 + 3x2 + y + -4y2 = -1x + -4xy 3x2 + y + -4y2 = -1x + -4xy Add '-3x2' to each side of the equation. 3x2 + y + -3x2 + -4y2 = -1x + -4xy + -3x2 Reorder the terms: 3x2 + -3x2 + y + -4y2 = -1x + -4xy + -3x2 Combine like terms: 3x2 + -3x2 = 0 0 + y + -4y2 = -1x + -4xy + -3x2 y + -4y2 = -1x + -4xy + -3x2 Add '-1y' to each side of the equation. y + -1y + -4y2 = -1x + -4xy + -3x2 + -1y Combine like terms: y + -1y = 0 0 + -4y2 = -1x + -4xy + -3x2 + -1y -4y2 = -1x + -4xy + -3x2 + -1y Add '4y2' to each side of the equation. -4y2 + 4y2 = -1x + -4xy + -3x2 + -1y + 4y2 Combine like terms: -4y2 + 4y2 = 0 0 = -1x + -4xy + -3x2 + -1y + 4y2 Simplifying 0 = -1x + -4xy + -3x2 + -1y + 4y2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 72-6x+2y=0 | | 72+6x+2x=0 | | 20-8y=5-3y | | (x+2y+8)dx-(3x-6y+18)dy=0 | | 3(2x-5)(2x+4)= | | 2-3(x-1)=29 | | 8y+26=42 | | 11x=3.1416 | | P=25+3Qs | | 5x+3y=.6 | | log(x+2)-log(x)=12 | | 5x+20=4x-20 | | ((x+2)*(x+2)*(x+2))-(x*x*x)=152 | | 2x*y*dx+(y^2-x^2)*dy=0 | | 30+5q=31 | | 5*x+6*y= | | 3t+5=21 | | 2(x+2)=2x-4 | | x+32=-7x | | 4(x-2)=7x+2 | | 2x+17=9x+3 | | (3,8),(-4,8)= | | (1,-1),(4/3,5)= | | x=-5/3 | | -4x+79=9x+2-2x | | 7x-16=-x+8 | | 0=4x^2+100 | | x^2+6x+y^2+18y=-26 | | 3x-3.6=4.2 | | 0=x^2+5x-24 | | p*60=48 | | p*200=208 |

Equations solver categories