(3x-3)/(x(2)-3x)=3

Simple and best practice solution for (3x-3)/(x(2)-3x)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-3)/(x(2)-3x)=3 equation:



(3x-3)/(x(2)-3x)=3
We move all terms to the left:
(3x-3)/(x(2)-3x)-(3)=0
Domain of the equation: (x2-3x)!=0
x∈R
We add all the numbers together, and all the variables
(3x-3)/(+x^2-3x)-3=0
We multiply all the terms by the denominator
-3*(+x^2-3x)+(3x-3)=0
We multiply parentheses
-3x^2+9x+(3x-3)=0
We get rid of parentheses
-3x^2+9x+3x-3=0
We add all the numbers together, and all the variables
-3x^2+12x-3=0
a = -3; b = 12; c = -3;
Δ = b2-4ac
Δ = 122-4·(-3)·(-3)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{3}}{2*-3}=\frac{-12-6\sqrt{3}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{3}}{2*-3}=\frac{-12+6\sqrt{3}}{-6} $

See similar equations:

| 5x+2/10=3x | | 8-7=5x-4x+9 | | x=20=5x-4 | | 3(x-1)-9=4(1+x)+5 | | k3+ 9=11 | | 4n-9=-9+0 | | 4–3b–b2=0 | | 4(2-3y)+6y=-6y+8 | | 3x+4=5.5 | | 3(2x+5)-4x=5 | | -7(2b+6)=6-6b | | -5+x/22=-1-17 | | -26=9x+10 | | 80=9/x | | 9+m/3=2-9 | | -6(3b+6)=-5b-10 | | 2|3-x|=4 | | 60=9/x | | -9+n/4=-7+8 | | P=-6x-9 | | 12=5g−13g−44 | | (3a-4)+6a=5a+22 | | -3u-44=-8(u+3) | | 4(x-5)+2x=-8+2x | | -2(2n-3)=16 | | 2-1/2(-8x-10)=4-(-4x-3) | | n-5/2=5+15 | | 4+3(2x-1)=15 | | 2m+11=m-(4m-5) | | 4a-6-3a=-9+3 | | (1)/(x)+(2)/(x-3)=3 | | -4x+-3=-4x+-4 |

Equations solver categories