(3x-30)+(x+30)+(1/5x+54)=180

Simple and best practice solution for (3x-30)+(x+30)+(1/5x+54)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-30)+(x+30)+(1/5x+54)=180 equation:



(3x-30)+(x+30)+(1/5x+54)=180
We move all terms to the left:
(3x-30)+(x+30)+(1/5x+54)-(180)=0
Domain of the equation: 5x+54)!=0
x∈R
We get rid of parentheses
3x+x+1/5x-30+30+54-180=0
We multiply all the terms by the denominator
3x*5x+x*5x-30*5x+30*5x+54*5x-180*5x+1=0
Wy multiply elements
15x^2+5x^2-150x+150x+270x-900x+1=0
We add all the numbers together, and all the variables
20x^2-630x+1=0
a = 20; b = -630; c = +1;
Δ = b2-4ac
Δ = -6302-4·20·1
Δ = 396820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396820}=\sqrt{4*99205}=\sqrt{4}*\sqrt{99205}=2\sqrt{99205}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-630)-2\sqrt{99205}}{2*20}=\frac{630-2\sqrt{99205}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-630)+2\sqrt{99205}}{2*20}=\frac{630+2\sqrt{99205}}{40} $

See similar equations:

| 2.4x-0.8=13.6 | | 12x+7=–(2x–3)+16 | | 350+.05x=650 | | 3y-7y=2 | | -x=+3=-2x-18 | | 150+.40x=240 | | 6c+10=19 | | (2/3)x-6=6-(2/3)x | | 9^x-1-2*3^x-27=02 | | a+3=4a-18 | | =2x+368 | | 12x-48=-2x+6 | | 450=1.5/t | | −5x9−3=−7 | | 2.5=2x-3 | | 2=2.3x-1.8 | | 2.78=2.3x-1.8 | | 4x+24=2x+56 | | 43x+5=84x−3 | | 10x+x=-6+9x | | D=145.t=29 | | 15/x=62/100 | | 104.t=26 | | 6x+14-8x=19-16x+14x-5 | | 8y+4=4y+60 | | 2s-19=25 | | 2=8i-6 | | D=104t=26 | | 2(7x-2)+2x+4=46 | | 2y-4*3=6*3 | | 6x+18=4x+39+5 | | y+1/3=21/4 |

Equations solver categories