(3x-4)(3x-17)+69=180

Simple and best practice solution for (3x-4)(3x-17)+69=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-4)(3x-17)+69=180 equation:



(3x-4)(3x-17)+69=180
We move all terms to the left:
(3x-4)(3x-17)+69-(180)=0
We add all the numbers together, and all the variables
(3x-4)(3x-17)-111=0
We multiply parentheses ..
(+9x^2-51x-12x+68)-111=0
We get rid of parentheses
9x^2-51x-12x+68-111=0
We add all the numbers together, and all the variables
9x^2-63x-43=0
a = 9; b = -63; c = -43;
Δ = b2-4ac
Δ = -632-4·9·(-43)
Δ = 5517
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5517}=\sqrt{9*613}=\sqrt{9}*\sqrt{613}=3\sqrt{613}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-3\sqrt{613}}{2*9}=\frac{63-3\sqrt{613}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+3\sqrt{613}}{2*9}=\frac{63+3\sqrt{613}}{18} $

See similar equations:

| 168=-7(-8+8v) | | 63+4t+33=180 | | -10=56a | | 4f-1=9 | | x-122.6+x=180 | | w+8=−1 | | -0.5b+10=3b+6.2 | | 5t/8=10 | | −3x−40=−x^2 | | 5x+8+2x+7=8x−3 | | 7x2=5x+6 | | 3x+92=8x+56 | | 1/5(5x-15)=-2x-3+x | | x+3+6=1 | | 60+84+4c=180 | | 9+x/5=4.8 | | 9x-11=5x-19 | | x-2+10=3x-8 | | 12x-9=14x+3 | | -4c=5c-9 | | 3x-20=2x-13 | | (5a+4)-1=14-8a | | 11t-2(3t-5)=15 | | 2z+3z+40=180 | | 7+x/6-8=2 | | 3.1+10x=8.24 | | –4c=5c−9 | | -2x-8=-14* | | 5x-3/3=2x-5 | | 40(5)d=3500 | | 5r2−6=19 | | 2t+2t+40=180 |

Equations solver categories