(3x-4)(3x-8)=35

Simple and best practice solution for (3x-4)(3x-8)=35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-4)(3x-8)=35 equation:


Simplifying
(3x + -4)(3x + -8) = 35

Reorder the terms:
(-4 + 3x)(3x + -8) = 35

Reorder the terms:
(-4 + 3x)(-8 + 3x) = 35

Multiply (-4 + 3x) * (-8 + 3x)
(-4(-8 + 3x) + 3x * (-8 + 3x)) = 35
((-8 * -4 + 3x * -4) + 3x * (-8 + 3x)) = 35
((32 + -12x) + 3x * (-8 + 3x)) = 35
(32 + -12x + (-8 * 3x + 3x * 3x)) = 35
(32 + -12x + (-24x + 9x2)) = 35

Combine like terms: -12x + -24x = -36x
(32 + -36x + 9x2) = 35

Solving
32 + -36x + 9x2 = 35

Solving for variable 'x'.

Reorder the terms:
32 + -35 + -36x + 9x2 = 35 + -35

Combine like terms: 32 + -35 = -3
-3 + -36x + 9x2 = 35 + -35

Combine like terms: 35 + -35 = 0
-3 + -36x + 9x2 = 0

Factor out the Greatest Common Factor (GCF), '3'.
3(-1 + -12x + 3x2) = 0

Ignore the factor 3.

Subproblem 1

Set the factor '(-1 + -12x + 3x2)' equal to zero and attempt to solve: Simplifying -1 + -12x + 3x2 = 0 Solving -1 + -12x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -0.3333333333 + -4x + x2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + -4x + 0.3333333333 + x2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + -4x + x2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + -4x + x2 = 0 + 0.3333333333 -4x + x2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 -4x + x2 = 0.3333333333 The x term is -4x. Take half its coefficient (-2). Square it (4) and add it to both sides. Add '4' to each side of the equation. -4x + 4 + x2 = 0.3333333333 + 4 Reorder the terms: 4 + -4x + x2 = 0.3333333333 + 4 Combine like terms: 0.3333333333 + 4 = 4.3333333333 4 + -4x + x2 = 4.3333333333 Factor a perfect square on the left side: (x + -2)(x + -2) = 4.3333333333 Calculate the square root of the right side: 2.081665999 Break this problem into two subproblems by setting (x + -2) equal to 2.081665999 and -2.081665999.

Subproblem 1

x + -2 = 2.081665999 Simplifying x + -2 = 2.081665999 Reorder the terms: -2 + x = 2.081665999 Solving -2 + x = 2.081665999 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = 2.081665999 + 2 Combine like terms: -2 + 2 = 0 0 + x = 2.081665999 + 2 x = 2.081665999 + 2 Combine like terms: 2.081665999 + 2 = 4.081665999 x = 4.081665999 Simplifying x = 4.081665999

Subproblem 2

x + -2 = -2.081665999 Simplifying x + -2 = -2.081665999 Reorder the terms: -2 + x = -2.081665999 Solving -2 + x = -2.081665999 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = -2.081665999 + 2 Combine like terms: -2 + 2 = 0 0 + x = -2.081665999 + 2 x = -2.081665999 + 2 Combine like terms: -2.081665999 + 2 = -0.081665999 x = -0.081665999 Simplifying x = -0.081665999

Solution

The solution to the problem is based on the solutions from the subproblems. x = {4.081665999, -0.081665999}

Solution

x = {4.081665999, -0.081665999}

See similar equations:

| 6*m^2+m^2= | | 3(8+2a)=12-2a | | -12(n+12)=-12-12(10+n) | | 10q-5q=15 | | -2(3-5)=-16 | | x^2+2x+36=0 | | 6x+5=3(2x+1)+2 | | 12-(2x-3)=7 | | 16d-13d=18 | | 8x-2=9x-9 | | 2(z-5)=5(z+6)-16 | | 5+3g=17 | | 8g-5g=3 | | 67+25d=350+25d | | 6(x-9)+9=-45 | | 178=72-v | | 4g-3g=2 | | 2(x+8)=76 | | -1/6(x-12)+1/3(x+3)=x+33 | | 9(-4+2n)=6(7n-2) | | -5z+12=18 | | 4x-8=4x-1 | | 8-(3x-3)=2-4x | | -2x-9=-25 | | 1/4=1/4(h)+4 | | 5x-9y=3 | | 8b+11-3b=2(b+1) | | 2(a-8)+7=6(a+2)-3a-19 | | 2(6x-9)=3+5 | | 2.5(1+6y)=-18.5 | | 19=f+5 | | -2x+10+3x=4+2x+6 |

Equations solver categories