(3x-4)(4x-3)=(2x-4)(2x-5)

Simple and best practice solution for (3x-4)(4x-3)=(2x-4)(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-4)(4x-3)=(2x-4)(2x-5) equation:



(3x-4)(4x-3)=(2x-4)(2x-5)
We move all terms to the left:
(3x-4)(4x-3)-((2x-4)(2x-5))=0
We multiply parentheses ..
(+12x^2-9x-16x+12)-((2x-4)(2x-5))=0
We calculate terms in parentheses: -((2x-4)(2x-5)), so:
(2x-4)(2x-5)
We multiply parentheses ..
(+4x^2-10x-8x+20)
We get rid of parentheses
4x^2-10x-8x+20
We add all the numbers together, and all the variables
4x^2-18x+20
Back to the equation:
-(4x^2-18x+20)
We get rid of parentheses
12x^2-4x^2-9x-16x+18x+12-20=0
We add all the numbers together, and all the variables
8x^2-7x-8=0
a = 8; b = -7; c = -8;
Δ = b2-4ac
Δ = -72-4·8·(-8)
Δ = 305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{305}}{2*8}=\frac{7-\sqrt{305}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{305}}{2*8}=\frac{7+\sqrt{305}}{16} $

See similar equations:

| 4(-x-3)=-2(2x+5) | | 3(25r+5)=75 | | (3x-7)(4x-3)=(6x-4)(2x-5) | | 5x+6=7x-18+6x | | 7+-2n=-14 | | 9t-18/6=6 | | 2(6-4d=25-9d | | s/4+17=19 | | 5(x-3)+9-3x=20 | | 3/5(4x=1)=-9 | | 1.20*4a=7.20 | | 6x+.02x=7.44 | | 3/4x+8=-12 | | 3.3=n | | 15*x-3=18*5 | | 9f−4=8f | | 6x-15=3x+6. | | 3/4x+6=-12 | | m/3-7=15 | | 9w=7+10w | | s/3+11=13 | | (10x2+99x–5)÷=(x+10) | | (10x2+99x–5)÷(x+10)= | | Y=x2-6x+8 | | 600+x=x-20 | | y/7+4.2=-13.3 | | 4y-2/5=8 | | h=5+17(9)-16(9)^2 | | 7(2y-2)-5=7-3(3y-10) | | 20+4z+14=1-7z. | | -2/13=-8/11u | | 4x-1=2-5 |

Equations solver categories