(3x-4)(x+2)=-2

Simple and best practice solution for (3x-4)(x+2)=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-4)(x+2)=-2 equation:


Simplifying
(3x + -4)(x + 2) = -2

Reorder the terms:
(-4 + 3x)(x + 2) = -2

Reorder the terms:
(-4 + 3x)(2 + x) = -2

Multiply (-4 + 3x) * (2 + x)
(-4(2 + x) + 3x * (2 + x)) = -2
((2 * -4 + x * -4) + 3x * (2 + x)) = -2
((-8 + -4x) + 3x * (2 + x)) = -2
(-8 + -4x + (2 * 3x + x * 3x)) = -2
(-8 + -4x + (6x + 3x2)) = -2

Combine like terms: -4x + 6x = 2x
(-8 + 2x + 3x2) = -2

Solving
-8 + 2x + 3x2 = -2

Solving for variable 'x'.

Reorder the terms:
-8 + 2 + 2x + 3x2 = -2 + 2

Combine like terms: -8 + 2 = -6
-6 + 2x + 3x2 = -2 + 2

Combine like terms: -2 + 2 = 0
-6 + 2x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-2 + 0.6666666667x + x2 = 0

Move the constant term to the right:

Add '2' to each side of the equation.
-2 + 0.6666666667x + 2 + x2 = 0 + 2

Reorder the terms:
-2 + 2 + 0.6666666667x + x2 = 0 + 2

Combine like terms: -2 + 2 = 0
0 + 0.6666666667x + x2 = 0 + 2
0.6666666667x + x2 = 0 + 2

Combine like terms: 0 + 2 = 2
0.6666666667x + x2 = 2

The x term is 0.6666666667x.  Take half its coefficient (0.3333333334).
Square it (0.1111111112) and add it to both sides.

Add '0.1111111112' to each side of the equation.
0.6666666667x + 0.1111111112 + x2 = 2 + 0.1111111112

Reorder the terms:
0.1111111112 + 0.6666666667x + x2 = 2 + 0.1111111112

Combine like terms: 2 + 0.1111111112 = 2.1111111112
0.1111111112 + 0.6666666667x + x2 = 2.1111111112

Factor a perfect square on the left side:
(x + 0.3333333334)(x + 0.3333333334) = 2.1111111112

Calculate the square root of the right side: 1.452966315

Break this problem into two subproblems by setting 
(x + 0.3333333334) equal to 1.452966315 and -1.452966315.

Subproblem 1

x + 0.3333333334 = 1.452966315 Simplifying x + 0.3333333334 = 1.452966315 Reorder the terms: 0.3333333334 + x = 1.452966315 Solving 0.3333333334 + x = 1.452966315 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.3333333334' to each side of the equation. 0.3333333334 + -0.3333333334 + x = 1.452966315 + -0.3333333334 Combine like terms: 0.3333333334 + -0.3333333334 = 0.0000000000 0.0000000000 + x = 1.452966315 + -0.3333333334 x = 1.452966315 + -0.3333333334 Combine like terms: 1.452966315 + -0.3333333334 = 1.1196329816 x = 1.1196329816 Simplifying x = 1.1196329816

Subproblem 2

x + 0.3333333334 = -1.452966315 Simplifying x + 0.3333333334 = -1.452966315 Reorder the terms: 0.3333333334 + x = -1.452966315 Solving 0.3333333334 + x = -1.452966315 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.3333333334' to each side of the equation. 0.3333333334 + -0.3333333334 + x = -1.452966315 + -0.3333333334 Combine like terms: 0.3333333334 + -0.3333333334 = 0.0000000000 0.0000000000 + x = -1.452966315 + -0.3333333334 x = -1.452966315 + -0.3333333334 Combine like terms: -1.452966315 + -0.3333333334 = -1.7862996484 x = -1.7862996484 Simplifying x = -1.7862996484

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.1196329816, -1.7862996484}

See similar equations:

| x^2-14x=-11 | | log[2](7x)=2 | | Z/6-(-11)=-49 | | N^2+3n-3=-5 | | ((16x^3-24x)÷40x)^(1/2) | | -12(m+-6)= | | z=ny | | 2x-(7+3x)=11-(3x-3) | | 1196/32x= | | -5x-8x+3(4x+2)-8-2x=-15x-3x+2-4x | | 32x+x=1196 | | 2y^2+12y+10=00 | | 3x+x=1196 | | 5(x-5)=12x-24 | | -12m+72= | | (x-1)^2/3=25 | | Y^2-2x^2-6y-4x+6=0 | | 10x-7=3x+5x+15 | | x+32x=1196 | | X-2(6x+34)=10 | | 128=3x^2+53x+34 | | (c-1)^2/3=25 | | 32x=1196 | | (c-1)*2/3=25 | | 16+x=44 | | 5d-21=59 | | -r^2-41r-40= | | 8x+4(-2x+6x+3)-8=20 | | -12(m-6)= | | 4x^2+66-236=0 | | 2y-5x=3xy | | 200-(x/15)=0 |

Equations solver categories