(3x-5)(2x-25)=(25x-8)

Simple and best practice solution for (3x-5)(2x-25)=(25x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-5)(2x-25)=(25x-8) equation:


Simplifying
(3x + -5)(2x + -25) = (25x + -8)

Reorder the terms:
(-5 + 3x)(2x + -25) = (25x + -8)

Reorder the terms:
(-5 + 3x)(-25 + 2x) = (25x + -8)

Multiply (-5 + 3x) * (-25 + 2x)
(-5(-25 + 2x) + 3x * (-25 + 2x)) = (25x + -8)
((-25 * -5 + 2x * -5) + 3x * (-25 + 2x)) = (25x + -8)
((125 + -10x) + 3x * (-25 + 2x)) = (25x + -8)
(125 + -10x + (-25 * 3x + 2x * 3x)) = (25x + -8)
(125 + -10x + (-75x + 6x2)) = (25x + -8)

Combine like terms: -10x + -75x = -85x
(125 + -85x + 6x2) = (25x + -8)

Reorder the terms:
125 + -85x + 6x2 = (-8 + 25x)

Remove parenthesis around (-8 + 25x)
125 + -85x + 6x2 = -8 + 25x

Solving
125 + -85x + 6x2 = -8 + 25x

Solving for variable 'x'.

Reorder the terms:
125 + 8 + -85x + -25x + 6x2 = -8 + 25x + 8 + -25x

Combine like terms: 125 + 8 = 133
133 + -85x + -25x + 6x2 = -8 + 25x + 8 + -25x

Combine like terms: -85x + -25x = -110x
133 + -110x + 6x2 = -8 + 25x + 8 + -25x

Reorder the terms:
133 + -110x + 6x2 = -8 + 8 + 25x + -25x

Combine like terms: -8 + 8 = 0
133 + -110x + 6x2 = 0 + 25x + -25x
133 + -110x + 6x2 = 25x + -25x

Combine like terms: 25x + -25x = 0
133 + -110x + 6x2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
22.16666667 + -18.33333333x + x2 = 0

Move the constant term to the right:

Add '-22.16666667' to each side of the equation.
22.16666667 + -18.33333333x + -22.16666667 + x2 = 0 + -22.16666667

Reorder the terms:
22.16666667 + -22.16666667 + -18.33333333x + x2 = 0 + -22.16666667

Combine like terms: 22.16666667 + -22.16666667 = 0.00000000
0.00000000 + -18.33333333x + x2 = 0 + -22.16666667
-18.33333333x + x2 = 0 + -22.16666667

Combine like terms: 0 + -22.16666667 = -22.16666667
-18.33333333x + x2 = -22.16666667

The x term is -18.33333333x.  Take half its coefficient (-9.166666665).
Square it (84.02777775) and add it to both sides.

Add '84.02777775' to each side of the equation.
-18.33333333x + 84.02777775 + x2 = -22.16666667 + 84.02777775

Reorder the terms:
84.02777775 + -18.33333333x + x2 = -22.16666667 + 84.02777775

Combine like terms: -22.16666667 + 84.02777775 = 61.86111108
84.02777775 + -18.33333333x + x2 = 61.86111108

Factor a perfect square on the left side:
(x + -9.166666665)(x + -9.166666665) = 61.86111108

Calculate the square root of the right side: 7.865183474

Break this problem into two subproblems by setting 
(x + -9.166666665) equal to 7.865183474 and -7.865183474.

Subproblem 1

x + -9.166666665 = 7.865183474 Simplifying x + -9.166666665 = 7.865183474 Reorder the terms: -9.166666665 + x = 7.865183474 Solving -9.166666665 + x = 7.865183474 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '9.166666665' to each side of the equation. -9.166666665 + 9.166666665 + x = 7.865183474 + 9.166666665 Combine like terms: -9.166666665 + 9.166666665 = 0.000000000 0.000000000 + x = 7.865183474 + 9.166666665 x = 7.865183474 + 9.166666665 Combine like terms: 7.865183474 + 9.166666665 = 17.031850139 x = 17.031850139 Simplifying x = 17.031850139

Subproblem 2

x + -9.166666665 = -7.865183474 Simplifying x + -9.166666665 = -7.865183474 Reorder the terms: -9.166666665 + x = -7.865183474 Solving -9.166666665 + x = -7.865183474 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '9.166666665' to each side of the equation. -9.166666665 + 9.166666665 + x = -7.865183474 + 9.166666665 Combine like terms: -9.166666665 + 9.166666665 = 0.000000000 0.000000000 + x = -7.865183474 + 9.166666665 x = -7.865183474 + 9.166666665 Combine like terms: -7.865183474 + 9.166666665 = 1.301483191 x = 1.301483191 Simplifying x = 1.301483191

Solution

The solution to the problem is based on the solutions from the subproblems. x = {17.031850139, 1.301483191}

See similar equations:

| x^2+x-35= | | 7x-6=6x-6 | | 25x+9=5x-8 | | 36*5= | | 35x^2-9x-18=0 | | z^2+2z+1= | | p-(-1)=(-7) | | 80u=40 | | 9x-2(x+5)=5(x+6) | | x^2+2xy-8y^2= | | x^2-2x=x(5+x) | | 4x+4=48 | | 9x-2(x+5)=(x+6) | | x^4+5x^3-66x^2=0 | | 4(x-6)=5 | | 2(3p-3)=5(p-1) | | -2(x+4)-6=-3(2x+8)-10 | | Y^5=3x+7xy | | 9x+6=93 | | 6(x-3)=3(2x+1) | | 56-7x=11x-24 | | m^2-2m-42=0 | | 10*-45= | | 9x^2+69x=24 | | 40*-40= | | 14-8x=62-36x | | (10-10)-30x= | | 3x-9=x-3 | | 2.9(x+3.7)=17.4 | | (5*5)+10= | | 7x+1=x+7 | | x(4x-3)=7 |

Equations solver categories