If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x + -7)(2x + 1) = 0 Reorder the terms: (-7 + 3x)(2x + 1) = 0 Reorder the terms: (-7 + 3x)(1 + 2x) = 0 Multiply (-7 + 3x) * (1 + 2x) (-7(1 + 2x) + 3x * (1 + 2x)) = 0 ((1 * -7 + 2x * -7) + 3x * (1 + 2x)) = 0 ((-7 + -14x) + 3x * (1 + 2x)) = 0 (-7 + -14x + (1 * 3x + 2x * 3x)) = 0 (-7 + -14x + (3x + 6x2)) = 0 Combine like terms: -14x + 3x = -11x (-7 + -11x + 6x2) = 0 Solving -7 + -11x + 6x2 = 0 Solving for variable 'x'. Factor a trinomial. (-1 + -2x)(7 + -3x) = 0Subproblem 1
Set the factor '(-1 + -2x)' equal to zero and attempt to solve: Simplifying -1 + -2x = 0 Solving -1 + -2x = 0 Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + -2x = 0 + 1 Combine like terms: -1 + 1 = 0 0 + -2x = 0 + 1 -2x = 0 + 1 Combine like terms: 0 + 1 = 1 -2x = 1 Divide each side by '-2'. x = -0.5 Simplifying x = -0.5Subproblem 2
Set the factor '(7 + -3x)' equal to zero and attempt to solve: Simplifying 7 + -3x = 0 Solving 7 + -3x = 0 Move all terms containing x to the left, all other terms to the right. Add '-7' to each side of the equation. 7 + -7 + -3x = 0 + -7 Combine like terms: 7 + -7 = 0 0 + -3x = 0 + -7 -3x = 0 + -7 Combine like terms: 0 + -7 = -7 -3x = -7 Divide each side by '-3'. x = 2.333333333 Simplifying x = 2.333333333Solution
x = {-0.5, 2.333333333}
| 3(5n+2n)=7+10n | | 7(39/11) | | f(x)=2x^2-20x+48 | | log(x)256=-4/5 | | sin*0.5*x=0 | | 11x+3(4-2x)=10+2x | | 8y+14=16y | | 25x^2-9y^2-200x+18y=-391 | | y[n]-0.3y[n-1]+0.1[n-2]-0.037y[n-3]=x[n] | | 9x+15+6x=15 | | -2(7x-5)+8=14x+18 | | 2(3a+1)=7-4a | | 2(3x+1)-3(4x-3)=5 | | X-9=-18/x | | 7/8x-8=256 | | 4y-4(y+3)=3(y+1) | | x^2-kx=f(x) | | 5z^6+8z^6= | | 5z^6+8z^8= | | 4r-8b+12=-4b | | y=-5+10x | | 1.2x+4.8=16-12x+2 | | -1323+590= | | -1/2(-4x+3)-2=1+1/2 | | 6=bj+kforj | | 5m+10=35 | | 0,15(2x+4)=2(1,3+0,3x)-0.6 | | 1e=06x-88332 | | .25(t+4)=21 | | (y+4)dx+(x-5)dy=0 | | X^4/5(X-4)^2=0 | | 2x^2+2=394 |