(3x-7)(8x+2x)=(4x+4)(5-6)

Simple and best practice solution for (3x-7)(8x+2x)=(4x+4)(5-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-7)(8x+2x)=(4x+4)(5-6) equation:



(3x-7)(8x+2x)=(4x+4)(5-6)
We move all terms to the left:
(3x-7)(8x+2x)-((4x+4)(5-6))=0
We add all the numbers together, and all the variables
(3x-7)(+10x)-((4x+4)(-1))=0
We multiply parentheses ..
(+30x^2-70x)-((4x+4)(-1))=0
We calculate terms in parentheses: -((4x+4)(-1)), so:
(4x+4)(-1)
We multiply parentheses ..
(-4x-4)
We get rid of parentheses
-4x-4
Back to the equation:
-(-4x-4)
We get rid of parentheses
30x^2-70x+4x+4=0
We add all the numbers together, and all the variables
30x^2-66x+4=0
a = 30; b = -66; c = +4;
Δ = b2-4ac
Δ = -662-4·30·4
Δ = 3876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3876}=\sqrt{4*969}=\sqrt{4}*\sqrt{969}=2\sqrt{969}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-66)-2\sqrt{969}}{2*30}=\frac{66-2\sqrt{969}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-66)+2\sqrt{969}}{2*30}=\frac{66+2\sqrt{969}}{60} $

See similar equations:

| -7+4(n-2)=3(2n+5) | | 7/100(n)=21 | | 9(x+3)=49 | | 12m-1800+12=6m-1800= | | -2(b-3)-3(1+b)=3b-5b | | -2s+3=-7 | | 6x-33=3(5x-2) | | 9.4j+1.57=4.01+9.8j | | 2y+5=5y+2 | | -2(1-7x)+3x=9+6x | | 3x-2×-7=8×+14 | | 3/5x+5=14/3 | | 6(x-8)=144 | | -8(5+6p)=-3p+5 | | 2-x-6/5=x/3 | | -9.8m-7.8=4.27-8.1m | | -2t-10=9-7t+6 | | -10(-6+k)=190 | | -4v-9=3v-5 | | 9-m8m8=1 | | 1=6n+9 | | 40=29-x | | -4v-9=3v-8 | | -6t+7=3 | | 8m^2=4m | | 5u+1=6u+9 | | 28.2=4n-2 | | X+1/y-1=2/5 | | 6.2=2n-5 | | 4(w+16)-4.4=15.6 | | 7.8u-5.54=8.1u+0.75-3.35 | | 7(s-4)=-3+2s,s= |

Equations solver categories