(3x-7)*(3x-7)-4*(x+1)*(x+1)=0

Simple and best practice solution for (3x-7)*(3x-7)-4*(x+1)*(x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-7)*(3x-7)-4*(x+1)*(x+1)=0 equation:



(3x-7)(3x-7)-4(x+1)(x+1)=0
We multiply parentheses ..
(+9x^2-21x-21x+49)-4(x+1)(x+1)=0
We get rid of parentheses
9x^2-21x-21x-4(x+1)(x+1)+49=0
We multiply parentheses ..
9x^2-4(+x^2+x+x+1)-21x-21x+49=0
We add all the numbers together, and all the variables
9x^2-4(+x^2+x+x+1)-42x+49=0
We multiply parentheses
9x^2-4x^2-4x-4x-42x-4+49=0
We add all the numbers together, and all the variables
5x^2-50x+45=0
a = 5; b = -50; c = +45;
Δ = b2-4ac
Δ = -502-4·5·45
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1600}=40$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-40}{2*5}=\frac{10}{10} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+40}{2*5}=\frac{90}{10} =9 $

See similar equations:

| 5u=7u-52 | | 3x(3x+10)=-16 | | 74-2x=-50-9x | | 2000=400+y | | 7y+4=2y+49 | | u+12=8u-72 | | 4c-21=6c-53 | | 10z-72=4z | | 10x-9=8x-1 | | -4x+3=7x-13 | | 8a-11=a+10 | | 8x-3x+5=6x+x-3 | | a+1=3a-93 | | (3x+1)^2-8=41 | | 9x+7=6x-14 | | 13x+3=5x+27 | | d+573=–32 | | 7c+37=2c+26 | | (4x+1)(5x2)=0 | | 18x+4=9x+49 | | 10s-75=2s+29 | | 2(s-3)=9 | | 7x+19=2(14+5x) | | 6u-54=3u+9 | | 4a-11=9-5 | | 4v=v+3 | | n/4+10=2 | | 11x+3=7x-33 | | 5(x+1=3(3-x) | | 16z+9=4z+3. | | 16z9=4z+3. | | -7x−36=6x+42 |

Equations solver categories