(3x-8)(x-3)=15

Simple and best practice solution for (3x-8)(x-3)=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-8)(x-3)=15 equation:


Simplifying
(3x + -8)(x + -3) = 15

Reorder the terms:
(-8 + 3x)(x + -3) = 15

Reorder the terms:
(-8 + 3x)(-3 + x) = 15

Multiply (-8 + 3x) * (-3 + x)
(-8(-3 + x) + 3x * (-3 + x)) = 15
((-3 * -8 + x * -8) + 3x * (-3 + x)) = 15
((24 + -8x) + 3x * (-3 + x)) = 15
(24 + -8x + (-3 * 3x + x * 3x)) = 15
(24 + -8x + (-9x + 3x2)) = 15

Combine like terms: -8x + -9x = -17x
(24 + -17x + 3x2) = 15

Solving
24 + -17x + 3x2 = 15

Solving for variable 'x'.

Reorder the terms:
24 + -15 + -17x + 3x2 = 15 + -15

Combine like terms: 24 + -15 = 9
9 + -17x + 3x2 = 15 + -15

Combine like terms: 15 + -15 = 0
9 + -17x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
3 + -5.666666667x + x2 = 0

Move the constant term to the right:

Add '-3' to each side of the equation.
3 + -5.666666667x + -3 + x2 = 0 + -3

Reorder the terms:
3 + -3 + -5.666666667x + x2 = 0 + -3

Combine like terms: 3 + -3 = 0
0 + -5.666666667x + x2 = 0 + -3
-5.666666667x + x2 = 0 + -3

Combine like terms: 0 + -3 = -3
-5.666666667x + x2 = -3

The x term is -5.666666667x.  Take half its coefficient (-2.833333334).
Square it (8.027777782) and add it to both sides.

Add '8.027777782' to each side of the equation.
-5.666666667x + 8.027777782 + x2 = -3 + 8.027777782

Reorder the terms:
8.027777782 + -5.666666667x + x2 = -3 + 8.027777782

Combine like terms: -3 + 8.027777782 = 5.027777782
8.027777782 + -5.666666667x + x2 = 5.027777782

Factor a perfect square on the left side:
(x + -2.833333334)(x + -2.833333334) = 5.027777782

Calculate the square root of the right side: 2.242270675

Break this problem into two subproblems by setting 
(x + -2.833333334) equal to 2.242270675 and -2.242270675.

Subproblem 1

x + -2.833333334 = 2.242270675 Simplifying x + -2.833333334 = 2.242270675 Reorder the terms: -2.833333334 + x = 2.242270675 Solving -2.833333334 + x = 2.242270675 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2.833333334' to each side of the equation. -2.833333334 + 2.833333334 + x = 2.242270675 + 2.833333334 Combine like terms: -2.833333334 + 2.833333334 = 0.000000000 0.000000000 + x = 2.242270675 + 2.833333334 x = 2.242270675 + 2.833333334 Combine like terms: 2.242270675 + 2.833333334 = 5.075604009 x = 5.075604009 Simplifying x = 5.075604009

Subproblem 2

x + -2.833333334 = -2.242270675 Simplifying x + -2.833333334 = -2.242270675 Reorder the terms: -2.833333334 + x = -2.242270675 Solving -2.833333334 + x = -2.242270675 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2.833333334' to each side of the equation. -2.833333334 + 2.833333334 + x = -2.242270675 + 2.833333334 Combine like terms: -2.833333334 + 2.833333334 = 0.000000000 0.000000000 + x = -2.242270675 + 2.833333334 x = -2.242270675 + 2.833333334 Combine like terms: -2.242270675 + 2.833333334 = 0.591062659 x = 0.591062659 Simplifying x = 0.591062659

Solution

The solution to the problem is based on the solutions from the subproblems. x = {5.075604009, 0.591062659}

See similar equations:

| 6y-5(y-3)+5=6 | | -8x^2-7x+3=0 | | y=0.666x^2 | | 2(3x+5)-7=3(4x-3) | | -3+13=14x-2-13x | | (2x+3y)dx+(y-x)dy=0 | | y=0.6666666666x^2 | | 1+u=8 | | 4d-12=3d+3 | | 5y-17y=-48-60 | | 2(3x+5)-7=3(4x-7) | | 6x^2+22x+48=0 | | -9z^2+10z+5=0 | | p(x)=x^2-4x-11 | | -6(-3f-4)=-45 | | -2v=32 | | 2=x^3+2x-1 | | -5(2u-3y-6)= | | 2(5x+4)+6x=21+16x-3 | | -1.6(9-m)=-21.536 | | 2v=32 | | 3(2c-1)-6=4c+5 | | 5x-7=4+3x | | 5x^2-300x+4000=0 | | -5+8-19= | | 2b+25-(-7b)=-38 | | -297=x^5+2x^2 | | -2(t+2)=14 | | 17-5(4x+3x)= | | 2r-6r+9r= | | 3x^3+2x^2-3x=0 | | 18p+9=11-3p |

Equations solver categories