If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3y)(5y+2)=90
We move all terms to the left:
(3y)(5y+2)-(90)=0
We multiply parentheses
15y^2+6y-90=0
a = 15; b = 6; c = -90;
Δ = b2-4ac
Δ = 62-4·15·(-90)
Δ = 5436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5436}=\sqrt{36*151}=\sqrt{36}*\sqrt{151}=6\sqrt{151}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{151}}{2*15}=\frac{-6-6\sqrt{151}}{30} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{151}}{2*15}=\frac{-6+6\sqrt{151}}{30} $
| 6k-9+2=7+4k | | 9^x=4/9*4^x | | -7.18+7.8k=6.1k-9.05 | | -10-10b=-5b+6-7b | | -7p+10=-4-5p | | 6-8z=-10z-8+4z | | 4(2x+3)=5(3x–2) | | -10u+10=-8u-10 | | 0=4/3x+-8 | | 2-3-92x+2=1 | | p(89)=445 | | -5j-5=9-7j | | 2(3y+7+5)=196-6 | | H-s=181/2 | | x^2–17x–18=0 | | -3(m-3)+8m=-91 | | 20w=-9/20 | | 3.33x+1=1.33x+5 | | 1.5=e+0.8 | | 8x-9=158= | | (8x-9)+158=360 | | 6x(3x-5)=2x(9x-3) | | 5(2x-3)-5=43 | | 20+x=35-2 | | 20+x=35-1 | | 3/4(9x-6)-5/8(1/2=10x) | | r+120/10=23 | | 8x14=7(-2-4x)+4x | | w/24+459=474 | | m/26+494=518 | | 15(x-3)+2=20 | | -14/2x+3/6=6/12 |