(3y+8)(3y+8)=716

Simple and best practice solution for (3y+8)(3y+8)=716 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3y+8)(3y+8)=716 equation:


Simplifying
(3y + 8)(3y + 8) = 716

Reorder the terms:
(8 + 3y)(3y + 8) = 716

Reorder the terms:
(8 + 3y)(8 + 3y) = 716

Multiply (8 + 3y) * (8 + 3y)
(8(8 + 3y) + 3y * (8 + 3y)) = 716
((8 * 8 + 3y * 8) + 3y * (8 + 3y)) = 716
((64 + 24y) + 3y * (8 + 3y)) = 716
(64 + 24y + (8 * 3y + 3y * 3y)) = 716
(64 + 24y + (24y + 9y2)) = 716

Combine like terms: 24y + 24y = 48y
(64 + 48y + 9y2) = 716

Solving
64 + 48y + 9y2 = 716

Solving for variable 'y'.

Reorder the terms:
64 + -716 + 48y + 9y2 = 716 + -716

Combine like terms: 64 + -716 = -652
-652 + 48y + 9y2 = 716 + -716

Combine like terms: 716 + -716 = 0
-652 + 48y + 9y2 = 0

Begin completing the square.  Divide all terms by
9 the coefficient of the squared term: 

Divide each side by '9'.
-72.44444444 + 5.333333333y + y2 = 0

Move the constant term to the right:

Add '72.44444444' to each side of the equation.
-72.44444444 + 5.333333333y + 72.44444444 + y2 = 0 + 72.44444444

Reorder the terms:
-72.44444444 + 72.44444444 + 5.333333333y + y2 = 0 + 72.44444444

Combine like terms: -72.44444444 + 72.44444444 = 0.00000000
0.00000000 + 5.333333333y + y2 = 0 + 72.44444444
5.333333333y + y2 = 0 + 72.44444444

Combine like terms: 0 + 72.44444444 = 72.44444444
5.333333333y + y2 = 72.44444444

The y term is 5.333333333y.  Take half its coefficient (2.666666667).
Square it (7.111111113) and add it to both sides.

Add '7.111111113' to each side of the equation.
5.333333333y + 7.111111113 + y2 = 72.44444444 + 7.111111113

Reorder the terms:
7.111111113 + 5.333333333y + y2 = 72.44444444 + 7.111111113

Combine like terms: 72.44444444 + 7.111111113 = 79.555555553
7.111111113 + 5.333333333y + y2 = 79.555555553

Factor a perfect square on the left side:
(y + 2.666666667)(y + 2.666666667) = 79.555555553

Calculate the square root of the right side: 8.919392107

Break this problem into two subproblems by setting 
(y + 2.666666667) equal to 8.919392107 and -8.919392107.

Subproblem 1

y + 2.666666667 = 8.919392107 Simplifying y + 2.666666667 = 8.919392107 Reorder the terms: 2.666666667 + y = 8.919392107 Solving 2.666666667 + y = 8.919392107 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-2.666666667' to each side of the equation. 2.666666667 + -2.666666667 + y = 8.919392107 + -2.666666667 Combine like terms: 2.666666667 + -2.666666667 = 0.000000000 0.000000000 + y = 8.919392107 + -2.666666667 y = 8.919392107 + -2.666666667 Combine like terms: 8.919392107 + -2.666666667 = 6.25272544 y = 6.25272544 Simplifying y = 6.25272544

Subproblem 2

y + 2.666666667 = -8.919392107 Simplifying y + 2.666666667 = -8.919392107 Reorder the terms: 2.666666667 + y = -8.919392107 Solving 2.666666667 + y = -8.919392107 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-2.666666667' to each side of the equation. 2.666666667 + -2.666666667 + y = -8.919392107 + -2.666666667 Combine like terms: 2.666666667 + -2.666666667 = 0.000000000 0.000000000 + y = -8.919392107 + -2.666666667 y = -8.919392107 + -2.666666667 Combine like terms: -8.919392107 + -2.666666667 = -11.586058774 y = -11.586058774 Simplifying y = -11.586058774

Solution

The solution to the problem is based on the solutions from the subproblems. y = {6.25272544, -11.586058774}

See similar equations:

| 13+2=15+1 | | 6x+5=x+30 | | ln(8)+10ln(x)= | | 6x+6=5x+10 | | x^2=x^2+2x+1-49 | | 100-47=60 | | (x-8)3= | | 3y=10y-35 | | 8a-5=10a | | 4x^2=9-6*x | | 2x+61=6x+5 | | 2p^2+p-51=0 | | 5(1)-12= | | 5(-6)-12= | | 12y+3x=9 | | 21y=20y-7 | | -7*-8+3*1=1 | | -7*4+3*-9=1 | | -2(2)+1= | | 10p=20 | | 9(11)+2(-7)=-5 | | 5*(x+8)=50 | | 9(-2)+2(1)=-5 | | 5*x+8=50 | | 9(0)+2(-4)=-5 | | 9(5)+2(6)=-5 | | -7=2(2)+8 | | 2=2(-3)+8 | | x+8=2(x-13)+4 | | -3=2(5)+8 | | 18=2(5)+8 | | 10x+8=49-1 |

Equations solver categories