(3z+1)(z-2)=(z-1)(z+7)

Simple and best practice solution for (3z+1)(z-2)=(z-1)(z+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3z+1)(z-2)=(z-1)(z+7) equation:



(3z+1)(z-2)=(z-1)(z+7)
We move all terms to the left:
(3z+1)(z-2)-((z-1)(z+7))=0
We multiply parentheses ..
(+3z^2-6z+z-2)-((z-1)(z+7))=0
We calculate terms in parentheses: -((z-1)(z+7)), so:
(z-1)(z+7)
We multiply parentheses ..
(+z^2+7z-1z-7)
We get rid of parentheses
z^2+7z-1z-7
We add all the numbers together, and all the variables
z^2+6z-7
Back to the equation:
-(z^2+6z-7)
We get rid of parentheses
3z^2-z^2-6z+z-6z-2+7=0
We add all the numbers together, and all the variables
2z^2-11z+5=0
a = 2; b = -11; c = +5;
Δ = b2-4ac
Δ = -112-4·2·5
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-9}{2*2}=\frac{2}{4} =1/2 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+9}{2*2}=\frac{20}{4} =5 $

See similar equations:

| F(n)=15+2n/5 | | 2x+(5x-3)=x(-4x+1)-5x | | 3x+(5x-3)(2x-4)=-x(-x-4)-1 | | 3/4=c-2/3 | | (-x+2)(5-25)=-2x(x-4)+7 | | (X-2)(4x+5)-2x(x-4)=-5 | | 9*2x=108 | | 9x=12(0.98-x) | | (X-2)(x+5)+3x(x-4)=7 | | x=120(0.98-x)/90 | | 149=c2 | | c2=149 | | 4(c-6)=-16 | | (−2e+7)*(2e−10)=0 | | (−2e+7)(2e−10)=0 | | -2x-34=2x+2 | | 34e=70/2e | | -3x+13=2x+5 | | -3x-21=x+7 | | -2x+17=x+18 | | 7^(5x)=12 | | |7-2x|=|5-3x|+|x+2| | | x+4x+23=-17 | | 5(z-4)+8z-3=0 | | -15x-2x=16-(3x-9) | | 5x-3(4x-29)=31 | | 2.6x-15.78=-9.7x+27.27 | | 25+2r=65 | | 400x-3000/400x=0.30 | | 3x+5(4x-34)=37 | | 7x^2+80x-1200=0 | | 22-2j=8 |

Equations solver categories