If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3z-4)(3z+4)=0
We use the square of the difference formula
9z^2-16=0
a = 9; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·9·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*9}=\frac{-24}{18} =-1+1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*9}=\frac{24}{18} =1+1/3 $
| 10/1v1=8 | | X2+10x=114 | | -4(3x+7)=-12x-28 | | -7(15=h)=56 | | 0.3x-1.4=0.7-2.2x | | x^2+1.024x-1.024=0 | | X8=5b | | 12=-9.81*t^2 | | 1/256=4^(5x+1) | | 294.20=1.10c-2.35 | | 0.25(8x-2)=0.25(8=8x) | | (7x-5)=(9x+16)+(6x+15) | | 4x+10=2x+20=180 | | 2x+10=118 | | -24+y=-6 | | x+2=111 | | d^2-20d-25=0 | | .5x+8=17 | | 2y+6=13y-4y+64 | | 164=-y+34 | | 8-0.32*x=0 | | 52=-u+294 | | 201-u=8 | | -12=v/9-8 | | -26=7y-5 | | 5x^2-12x=-64 | | -5u+6=54 | | 16=-8(v+4) | | 3v-72=6v | | 3b+31=11 | | -8b+20=-100 | | 5/2-5/4=a/7 |